scispace - formally typeset
Search or ask a question
Author

Jani Ollikainen

Bio: Jani Ollikainen is an academic researcher from Nokia. The author has contributed to research in topics: Antenna (radio) & Microstrip antenna. The author has an hindex of 27, co-authored 73 publications receiving 2953 citations. Previous affiliations of Jani Ollikainen include Helsinki University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the performance of the mobile phone handset antenna-chassis combination is analyzed based on an approximate decomposition of the waves on the structure into two resonant wavemodes: the antenna-element wavemode and the chassis wavemode.
Abstract: The performance of the mobile phone handset antenna-chassis combination is analyzed based on an approximate decomposition of the waves on the structure into two resonant wavemodes: the antenna-element wavemode and the chassis wavemode. A double resonator equivalent circuit model is presented and used to estimate the impedance bandwidth and the respective distributions of radiation losses with typical parameter values at 900 and 1800 MHz. It is noticed that at 900 MHz, the radiation losses of the antenna element wavemode represent typically less than 10% of the total power. Thus, the antenna element works mainly as a matching element, which couples to the low-Q resonant wavemode of the chassis. At 1800 MHz, the contribution of the antenna element wavemode is larger. By enhancing the coupling and by tuning the chassis resonance, it is possible to obtain an impedance bandwidth of over 50% (6 dB return loss) at both at 900 and 1800 MHz. The results given by the equivalent circuit study are fully supported by those of three-dimensional phone-model simulations, including calculation of the SAR and efficiency values. In prototyping, the 6 dB bandwidth of 5.5% was obtained at 980 MHz with a nonradiating coupling element with a volume of 1.6 cm/sup 3/ on a 120 mm long chassis.

500 citations

Journal ArticleDOI
TL;DR: The study of internal low-volume antenna structures for mobile terminals shows that the studied antenna concept is a very promising alternative for traditional antenna technologies.
Abstract: In this paper, internal low-volume antenna structures for mobile terminals are studied. The work concentrates on the possibilities to reduce the volume of mobile terminal antenna elements by efficiently utilizing the radiation of the currents on the mobile terminal chassis. Essentially nonresonant coupling elements are used to optimally couple to the dominating char- acteristic wavemodes of the chassis. The antenna structures are tuned to resonance with matching circuits. During the last few years, the approach has achieved growing interest—also among industrial manufacturers of mobile terminals. There exist, how- ever, no systematical feasibility and performance studies of the idea. During the work, two antenna models with very low-volume coupling elements are designed and in total four prototypes are constructed. The simulation and measurement results show that the studied antenna concept is a very promising alternative for traditional antenna technologies. The presented analysis provides useful and novel information for the designs of the future low-pro- file and low-volume mobile terminal antennas.

223 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of several phone chassis-related parameters-length, width, thickness, and distance between the head and phone-on the bandwidth, efficiency, and specific absorption rate (SAR) characteristics of internal mobile phone antennas are investigated.
Abstract: This paper presents a thorough investigation into the effects of several phone chassis-related parameters-length, width, thickness, and distance between the head and phone-on the bandwidth, efficiency, and specific absorption rate (SAR) characteristics of internal mobile phone antennas. The studied antenna-chassis combinations are located beside an anatomical head model in a position of actual handset use. The effect of the user's hand is also studied with two different hand models. The main part of the study is based on FDTD simulations, but also experimental results, which support the computationally obtained conclusions, are given. The presented analysis provides novel and useful information for future design of mobile handset antennas. The results show the general trends of bandwidth, SAR, and efficiency with different chassis parameters. The results also reveal a connection between these three performance parameters: an increase in SARs and a decrease in radiation efficiency occur compared to the general trend when the bandwidth reaches its maximum. This happens when the resonant frequency of the chassis equals that of the antenna.

213 citations

Patent
15 Feb 2007
TL;DR: In this paper, a system for indicating the relative direction of a target object or location as determined from the current position of a wireless communication device is proposed, which employs Direction of Arrival determination using an antenna array.
Abstract: A system for indicating the relative direction of a target object or location as determined from the current position of a wireless communication device. The system employs Direction of Arrival determination using an antenna array for indicating the direction of a target device and includes facilities to activate a location-indicating transmission in a target device, the ability to request that a location-indicating transmission be activated in a remote target device, relevant information reception from a target device and the display of all potential target devices within effective transmission range of the wireless communication device.

150 citations

Patent
Kongqiao Wang1, Jani Ollikainen1
30 Apr 2012
TL;DR: In this paper, the sensors are configured such that their respective sensing zones overlap spatially to define a third, overlapping, zone (136) in which both the first and second sensors are able to detect a common object.
Abstract: Apparatus (100) comprises a processor; a user interface enabling user interaction with one or more software applications associated with the processor; first (105a) and second sensors (105b) configured to detect, and generate signals corresponding to, objects located within respective first (134) and second sensing zones (132) remote from the apparatus, wherein the sensors are configured such that their respective sensing zones overlap spatially to define a third, overlapping, zone (136) in which both the first and second sensors are able to detect a common object; and a gesture recognition system for receiving signals from the sensors, the gesture recognition system being responsive to detecting an object inside the overlapping zone to control a first user interface function in accordance with signals received from both sensors.

143 citations


Cited by
More filters
Book
15 Jan 2002
TL;DR: In this paper, the authors present an overview of the most recent advances in regular-size Dual-Frequency Antennas and their application in a wide range of applications, including: 1.1 Introduction.
Abstract: Preface. 1. Introduction and Overview. 1.1 Introduction. 1.2 Compact Microstrip Antennas. 1.3 Compact Broadband Microstrip Antennas. 1.4 Compact Dual-Frequency Microstrip Antennas. 1.5 Compact Dual-Polarized Microstrip Antennas. 1.6 Compact Circularly Polarized Microstrip Antennas. 1.7 Compact Microstrip Antennas with Enhanced Gain. 1.8 Broadband Microstrip Antennas. 1.9 Broadband Dual-Frequency and Dual-Polarized Microstrip Antennas. 1.10 Broadband and Dual-Band Circularly Polarized Microstrip Antennas. 2. Compact Microstrip Antennas. 2.1 Introduction. 2.2 Use of a Shorted Patch with a Thin Dielectric Substrate. 2.3 Use of a Meandered Patch. 2.4 Use of a Meandered Ground Plane. 2.5 Use of a Planar Inverted-L Patch. 2.6 Use of an Inverted U-Shaped or Folded Patch. 3. Compact Broadband Microstrip Antennas. 3.1 Introduction. 3.2 Use of a Shorted Patch with a Thick Air Substrate. 3.3 Use of Stacked Shorted Patches. 3.4 Use of Chip-Resistor and Chip-Capacitor Loading Technique. 3.5 Use of a Slot-Loading Technique. 3.6 Use of a Slotted Ground Plane. 4. Compact Dual-Frequency and Dual-Polarized Microstrip Antennas. 4.1 Introduction. 4.2 Some Recent Advances in Regular-Size Dual-Frequency Designs. 4.3 Compact Dual-Frequency Operation with Same Polarization Planes. 4.4 Compact Dual-Frequency Operation. 4.5 Dual-Band or Triple-Band PIFA. 4.6 Compact Dual-Polarized Designs. 5. Compact Circularly Polarized Microstrip Antennas. 5.1 Introduction. 5.2 Designs with a Cross-Slot of Unequal Arm Lengths. 5.3 Designs with a Y-Shaped Slot of Unequal Arm Lengths. 5.4 Designs with Slits. 5.5 Designs with Spur Lines. 5.6 Designs with Truncated Corners. 5.7 Designs with Peripheral Cuts. 5.8 Designs with a Tuning Stub. 5.9 Designs with a Bent Tuning Stub. 5.10 Compact CP Designs with an Inset Microstrip-Line Feed. 6. Compact Microstrip Antennas with Enhanced Gain. 6.1 Introduction. 6.2 Compact Microstrip Antennas with High-Permittivity Superstrate. 6.3 Compact Microstrip Antennas with Active Circuitry. 7. Broadband Microstrip Antennas. 7.1 Introduction. 7.2 Use of Additional Microstrip Resonators. 7.3 Microstrip Antennas with an Air Substrate. 7.4 Broadband Slot-Loaded Microstrip Antennas. 7.5 Broadband Microstrip Antennas with an Integrated Reactive Loading. 7.6 Broadband Microstrip Antennas with Reduced Cross-Polarization Radiation. 8. Broadband Dual-Frequency and Dual-Polarized Microstrip Antennas. 8.1 Introduction. 8.2 Broadband Dual-Frequency Microstrip Antennas. 8.3 Broadband Dual-Polarized Microstrip Antennas. 9. Broadband and Dual-Band Circularly Polarized Microstrip Antennas. 9.1 Introduction. 9.2 Broadband Single-Feed Circularly Polarized Microstrip Antennas. 9.3 Broadband Two-Feed Circularly Polarized Microstrip Antennas. 9.4 Broadband Four-Feed Circularly Polarized Microstrip Antennas. 9.5 Dual-Band Circularly Polarized Microstrip Antennas. Index.

1,734 citations

Book
01 Oct 2002
TL;DR: In this article, the authors provide an exhaustive coverage of broadband techniques, including the most up-to-date information to help users choose and design the optimum broadband microstrip antenna configurations without sacrificing other antenna parameters.
Abstract: Look to this new, cutting-edge microstrip antenna book for the first exhaustive coverage of broadband techniques, including the most up-to-date information to help you choose and design the optimum broadband microstrip antenna configurations for your applications, without sacrificing other antenna parameters. The book shows you how to take advantage of the lightweight, low volume benefits of these antennas, by providing clear explanations of the various configurations and simple design equations that help you analyze and design microstrip antennas with speed and confidence. This practical resource offers you a comprehensive understanding of the radiation mechanism and characteristic of microstrip antennas, and provides guidance in designing new types of planar monopole antennas with multi-octave bandwidth. You learn how to select and design proper broadband microstrip antenna configurations for compact, tunable, dual-band and circular polarization applications. Moreover, the book compares all the broadband techniques and suggests the most attractive configuration. Extensively referenced with over 300 illustrations and 140 equations.

1,436 citations

Patent
15 Jan 2007
TL;DR: An antenna for a communications device having configurable elements controlled to modify an antenna impedance and/or an antenna resonant frequency to improve performance of the communications device is described in this article, where the antenna impedance is controlled to substantially match to an output impedance of a power amplifier that supplies the antenna with a signal for transmission.
Abstract: An antenna for a communications device having configurable elements controlled to modify an antenna impedance and/or an antenna resonant frequency to improve performance of the communications device The antenna impedance is controlled to substantially match to an output impedance of a power amplifier that supplies the antenna with a signal for transmission The antenna resonant frequency is controlled to overcome the effects of various operating conditions that can detune the antenna or in response to an operable frequency band

574 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the work that has been developed by the authors for the last several years, in order to demonstrate that the Theory of Characteristic Modes can be used to perform a systematic design of different types of antennas.
Abstract: The objective of this paper is to summarize the work that has been developed by the authors for the last several years, in order to demonstrate that the Theory of Characteristic Modes can be used to perform a systematic design of different types of antennas. Characteristic modes are real current modes that can be computed numerically for conducting bodies of arbitrary shape. Since characteristic modes form a set of orthogonal functions, they can be used to expand the total current on the surface of the body. However, this paper shows that what makes characteristic modes really attractive for antenna design is the physical insight they bring into the radiating phenomena taking place in the antenna. The resonance frequency of modes, as well as their radiating behavior, can be determined from the information provided by the eigenvalues associated with the characteristic modes. Moreover, by studying the current distribution of modes, an optimum feeding arrangement can be found in order to obtain the desired radiating behavior.

565 citations

Journal ArticleDOI
TL;DR: Several solutions are presented to reduce the mutual coupling between two planar inverted-F antennas working in close radiocommunication standards and positioned on a finite-sized ground plane modeling the printed circuit board (PCB) of a typical mobile phone.
Abstract: Several solutions are presented to reduce the mutual coupling between two planar inverted-F antennas (PIFAs) working in close radiocommunication standards and positioned on a finite-sized ground plane modeling the printed circuit board (PCB) of a typical mobile phone. First, the two PIFAs are designed on separate PCBs to, respectively, operate in the DCS1800 and UMTS bands. In a second step, they are associated on the top edge of the same PCB. Realistic arrangements are then theoretically and experimentally studied. Finally, several solutions are investigated to maximize the isolation. They consist in inserting a suspended line between the PIFAs' feedings and/or shorting points. All along this paper, several prototypes are fabricated and their performances measured to validate the obtained IE3D moment method-based simulation results

530 citations