scispace - formally typeset
Search or ask a question
Author

Janice K. Pendola

Bio: Janice K. Pendola is an academic researcher. The author has contributed to research in topics: Oocyte & Spermatogenesis. The author has an hindex of 6, co-authored 7 publications receiving 929 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Proof of the principle that fully competent mammalian oocytes can develop in vitro from primordial follicles is provided and a significant advance in oocyte culture technology is presented.
Abstract: The objective of this study was to improve the conditions for oocyte development in vitro beginning with the primordial follicles of newborn mice. Previous studies showed that oocytes competent of meiotic maturation, fertilization, and preimplantation could develop in vitro from primordial follicles. However, the success rates were low and only one live offspring was produced (0.5% of embryos transferred). A revised protocol was compared with the original protocol using oocyte maturation and preimplantation development as end points. The percentage of oocytes maturing to metaphase II and developing to the blastocyst stage was significantly improved using the revised protocol. In addition, we compared the production of offspring from two-cell stage embryos derived from in vitro-grown and in vivo-grown oocytes. Of 1160 transferred two-cell stage embryos derived from in vitro-grown oocytes, 66 (5.7%) developed to term and 7 pups (10.6%) died at birth. The remaining 59 pups (27 females, 32 males) survived to adulthood. By comparison, of 437 transferred two-cell stage embryos derived from in vivo-grown oocytes, 76 (17.4%) developed to term and 4 (5.3%) died at birth. The remaining 72 pups (35 females, 37 males) survived to adulthood. These studies provide proof of the principle that fully competent mammalian oocytes can develop in vitro from primordial follicles and present a significant advance in oocyte culture technology.

562 citations

Journal ArticleDOI
TL;DR: Oocytes use paracrine signals to promote their own development via metabolic cooperativity with cumulus cells via gap junctions, and the ability of oocytes to mediate this cooperativity is developmentally regulated and acquired only in later stages of oocyte development.
Abstract: A search for genes expressed more highly in mouse cumulus cells than mural granulosa cells by subtraction hybridization yielded Slc38a3. SLC38A3 is a sodium-coupled neutral amino acid transporter having substrate preference for l-glutamate, l-histidine, and l-alanine. Detectable levels of Slc38a3 mRNA were found by in situ hybridization in granulosa cells of large preantral follicles, but levels were higher in all granulosa cells of small antral follicles; expression became limited to cumulus cells of large antral follicles. Expression of Slc38a3 mRNA in granulosa cells was promoted by fully grown oocytes from antral follicles but not by growing oocytes from preantral follicles. Fully grown oocytes were dependent on cumulus cells for uptake of l-alanine and l-histidine but not l-leucine. Fully grown but not growing oocytes secreted one or more paracrine factors that promoted cumulus cell uptake of all three amino acids but of l-alanine and l-histidine to a much greater extent than l-leucine. Uptake of l-leucine appeared dependent primarily on contact-mediated signals from fully grown oocytes. Fully grown oocytes also promoted elevated levels of Slc38a3 mRNA and l-alanine transport by preantral granulosa cells, but growing oocytes did not. Therefore, fully grown oocytes secrete one or more paracrine factors that promote cumulus cell uptake of amino acids that oocytes themselves transport poorly. These amino acids are likely transferred to oocytes via gap junctions. Thus, oocytes use paracrine signals to promote their own development via metabolic cooperativity with cumulus cells. The ability of oocytes to mediate this cooperativity is developmentally regulated and acquired only in later stages of oocyte development.

220 citations

Journal ArticleDOI
23 Mar 2012-Science
TL;DR: It is shown that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes, and is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.
Abstract: Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.

97 citations

Journal ArticleDOI
TL;DR: Preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery.
Abstract: The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.

59 citations

Journal ArticleDOI
TL;DR: An ENU mutagenesis program is described that is generating a large resource of mutant mouse models of infertility; male and female mutants with defects in a wide range of reproductive processes are being recovered and has potential to reveal novel human contraceptive targets.
Abstract: Genetic strategies for the post-genomic sequence age will be designed to provide information about gene function in a myriad of physiological processes. Here an ENU mutagenesis program (http://reprogenomics.jax.org) is described that is generating a large resource of mutant mouse models of infertility; male and female mutants with defects in a wide range of reproductive processes are being recovered. Identification of the genes responsible for these defects, and the pathways in which these genes function, will advance the fields of reproduction research and medicine. Importantly, this program has potential to reveal novel human contraceptive targets.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new perspective on oocyte-CC interactions is improving knowledge of the processes regulating oocyte quality, which is likely to have a number of applications, including improving the efficiency of clinical IVM and thereby providing new options for the treatment of infertility.
Abstract: Oocyte quality is a key limiting factor in female fertility, yet we have a poor understanding of what constitutes oocyte quality or the mechanisms governing it. The ovarian follicular microenvironment and maternal signals, mediated primarily through granulosa cells (GCs) and cumulus cells (CCs), are responsible for nurturing oocyte growth, development and the gradual acquisition of oocyte developmental competence. However, oocyte-GC/CC communication is bidirectional with the oocyte secreting potent growth factors that act locally to direct the differentiation and function of CCs. Two important oocyte-secreted factors (OSFs) are growth-differentiation factor 9 and bone morphogenetic protein 15, which activate signaling pathways in CCs to regulate key genes and cellular processes required for CC differentiation and for CCs to maintain their distinctive phenotype. Hence, oocytes appear to tightly control their neighboring somatic cells, directing them to perform functions required for appropriate development of the oocyte. This oocyte-CC regulatory loop and the capacity of oocytes to regulate their own microenvironment by OSFs may constitute important components of oocyte quality. In support of this notion, it has recently been demonstrated that supplementing oocyte in vitro maturation (IVM) media with exogenous OSFs improves oocyte developmental potential, as evidenced by enhanced pre- and post-implantation embryo development. This new perspective on oocyte-CC interactions is improving our knowledge of the processes regulating oocyte quality, which is likely to have a number of applications, including improving the efficiency of clinical IVM and thereby providing new options for the treatment of infertility.

836 citations

Journal ArticleDOI
TL;DR: Observations suggest that a complex network of cell-cell interactions is required to control the primordial to primary follicle transition, which provides therapeutic targets to regulate ovarian function and treat ovarian disease.
Abstract: The assembly of the primordial follicles early in ovarian development and the subsequent development and transition of the primordial follicle to the primary follicle are critical processes in ovarian biology. These processes directly affect the number of oocytes available to a female throughout her reproductive life. Once the pool of primordial follicles is depleted a series of physiological changes known as menopause occur. The inappropriate coordination of these processes contributes to ovarian pathologies such as premature ovarian failure (POF) and infertility. Primordial follicle assembly and development are coordinated by locally produced paracrine and autocrine growth factors. Endocrine factors such as progesterone have also been identified that influence follicular assembly. Locally produced factors that promote the primordial to primary follicle transition include growth factors such as kit ligand (KL), leukaemia inhibitory factor (LIF), bone morphogenic proteins (BMP's), keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF). Factors mediating both precursor theca-granulosa cell interactions and granulosa-oocyte interactions have been identified. A factor produced by preantral and antral follicles, Mullerian inhibitory substance, can act to inhibit the primordial to primary follicle transition. Observations suggest that a complex network of cell-cell interactions is required to control the primordial to primary follicle transition. Elucidation of the molecular and cellular control of primordial follicle assembly and the primordial to primary follicle transition provides therapeutic targets to regulate ovarian function and treat ovarian disease.

480 citations

Journal ArticleDOI
TL;DR: An understanding of the regulation of meiosis, coupled with advances in genomics, may ultimately allow us to diagnose the causes of meiotic-based infertilities, more wisely apply assisted reproductive technologies, and derive functional germ cells.
Abstract: Meiosis is an essential stage in gamete formation in all sexually reproducing organisms. Studies of mutations in model organisms and of human haplotype patterns are leading to a clearer understanding of how meiosis has adapted from yeast to humans, the genes that control the dynamics of chromosomes during meiosis, and how meiosis is tied to gametic success. Genetic disruptions and meiotic errors have important roles in infertility and the aetiology of developmental defects, especially aneuploidy. An understanding of the regulation of meiosis, coupled with advances in genomics, may ultimately allow us to diagnose the causes of meiosis-based infertilities, more wisely apply assisted reproductive technologies, and derive functional germ cells.

476 citations

Journal ArticleDOI
TL;DR: A comprehensive algorithm to manage fertility preservation through an individualized approach is presented and all current, emerging, experimental as well as controversial approaches are reviewed.
Abstract: In the USA alone, >650 000 women will be afflicted by cancer in 2003, and 8% of these cases will be aged <40 years. Due to improvements in cancer therapy, cure rates of both adult and childhood cancers increased significantly over the past three decades. However, long-term consequences of cancer therapy and impact on quality of life are now being recognized. One of the major sequelae of cytotoxic chemotherapy is gonadal failure. Cytotoxic chemotherapy and/or radiotherapy are not only used to treat malignant diseases, but also non-malignant systemic conditions. Upon reviewing the extent and mechanism of gonadal damage due to chemo-/radiotherapy, this article discusses indications and the wide range of methods of fertility preservation in a comprehensive manner. All current, emerging, experimental as well as controversial approaches are reviewed. A comprehensive algorithm to manage fertility preservation through an individualized approach is presented.

464 citations

Journal ArticleDOI
22 Sep 2016-Nature
TL;DR: A panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos is provided by developing a highly sensitive approach, STAR ChIP–seq, to unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.
Abstract: Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP-seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.

460 citations