scispace - formally typeset
Search or ask a question
Author

Janina J. Renk

Bio: Janina J. Renk is an academic researcher from Stockholm University. The author has contributed to research in topics: Dark matter & Effective field theory. The author has an hindex of 4, co-authored 5 publications receiving 189 citations. Previous affiliations of Janina J. Renk include University of Queensland & Imperial College London.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect.
Abstract: Cosmological models with Galileon gravity are an alternative to the standard $\Lambda {\rm CDM}$ paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, $C_\ell^{\rm T g}$, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of $C_\ell^{\rm T g}$ is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in $\Lambda {\rm CDM}$), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative $C_\ell^{\rm T g}$ and exhibits a $7.8\sigma$ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant region of the parameter space but permit regions where the goodness-of-fit is comparable to $\Lambda {\rm CDM}$. The data prefers a non zero sum of the neutrino masses ($\sum m_ u\approx 0.5$eV) with $ \sim \! 5\sigma$ significance in these models. The best-fitting models have values of $H_0$ consistent with local determinations, thereby avoiding the tension that exists in $\Lambda {\rm CDM}$. We also identify and discuss a $\sim \! 2\sigma$ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

177 citations

Journal ArticleDOI
TL;DR: In this article, the mass of the lightest neutrino has been shown to be less than 0.037 eV at 95% confidence with inverted ordering and 0.042 eV with normal mass ordering.
Abstract: We determine the upper limit on the mass of the lightest neutrino from the most robust recent cosmological and terrestrial data. Marginalizing over possible effective relativistic degrees of freedom at early times (Neff) and assuming normal mass ordering, the mass of the lightest neutrino is less than 0.037 eVat 95% confidence; with inverted ordering, the bound is 0.042 eV. These results improve upon the strength and robustness of other recent limits and constrain the mass of the lightest neutrino to be barely larger than the largest mass splitting. We show the impacts of realistic mass models and different sources of Neff.

32 citations

Journal ArticleDOI
TL;DR: CosmoBit as mentioned in this paper is a module within the open-source GAMBIT software framework for exploring connections between cosmology and particle physics with joint global fits, such as models of inflation, modifications of the effective number of relativistic degrees of freedom, exotic energy injection from annihilating or decaying dark matter, and variations of the properties of elementary particles such as neutrino masses.
Abstract: We introduce CosmoBit, a module within the open-source GAMBIT software framework for exploring connections between cosmology and particle physics with joint global fits. CosmoBit provides a flexible framework for studying various scenarios beyond ΛCDM, such as models of inflation, modifications of the effective number of relativistic degrees of freedom, exotic energy injection from annihilating or decaying dark matter, and variations of the properties of elementary particles such as neutrino masses and the lifetime of the neutron. Many observables and likelihoods in CosmoBit are computed via interfaces to AlterBBN, CLASS, DarkAges, MontePython, MultiModeCode, and plc. This makes it possible to apply a wide range of constraints from large-scale structure, Type Ia supernovae, Big Bang Nucleosynthesis and the cosmic microwave background. Parameter scans can be performed using the many different statistical sampling algorithms available within the GAMBIT framework, and results can be combined with calculations from other GAMBIT modules focused on particle physics and dark matter. We include extensive validation plots and a first application to scenarios with non-standard relativistic degrees of freedom and neutrino temperature, showing that the corresponding constraint on the sum of neutrino masses is much weaker than in the standard scenario.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework and perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks.
Abstract: We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework $\textsf{GAMBIT}$. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and 8 nuisance parameters that reflect uncertainties in the local DM halo, nuclear form factors and the top quark mass. We include the renormalization group evolution of all operator coefficients and perform an automated matching to the non-relativistic EFT relevant for DM scattering. Our up-to-date likelihood functions include all relevant experimental constraints based on the latest data from $\mathit{Planck}$, direct and indirect detection experiments, and the LHC, in particular a very recent ATLAS monojet search based on the full run 2 dataset. For light DM ($\lesssim 100$ GeV), we find that it is impossible to satisfy all constraints simultaneously unless the particle under consideration constitutes only a DM sub-component and the scale of the new physics is so low that the EFT breaks down for the calculation of LHC constraints. At intermediate values of the new physics scale ($\approx 1$ TeV), we find that our results are significantly influenced by several small excesses in the LHC data such that the best-fit parameter regions depend on the precise prescription that we adopt to ensure EFT validity. In addition to these interesting features, we find a large region of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.

14 citations

Posted Content
TL;DR: In this article, the authors assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework and perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks.
Abstract: We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework $\textsf{GAMBIT}$. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and 8 nuisance parameters that reflect uncertainties in the local DM halo, nuclear form factors and the top quark mass. We include the renormalization group evolution of all operator coefficients and perform an automated matching to the non-relativistic EFT relevant for DM scattering. Our up-to-date likelihood functions include all relevant experimental constraints based on the latest data from $\mathit{Planck}$, direct and indirect detection experiments, and the LHC, in particular a very recent ATLAS monojet search based on the full run 2 dataset. For light DM ($\lesssim 100$ GeV), we find that it is impossible to satisfy all constraints simultaneously unless the particle under consideration constitutes only a DM sub-component and the scale of the new physics is so low that the EFT breaks down for the calculation of LHC constraints. At intermediate values of the new physics scale ($\approx 1$ TeV), we find that our results are significantly influenced by several small excesses in the LHC data such that the best-fit parameter regions depend on the precise prescription that we adopt to ensure EFT validity. In addition to these interesting features, we find a large region of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.

6 citations


Cited by
More filters
01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

1,924 citations

Journal ArticleDOI
TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

1,366 citations

Journal ArticleDOI
TL;DR: It is shown that the detection of an electromagnetic counterpart to the gravitational-wave signal from the merger of two neutron stars allows for stringent constraints on general scalar-tensor and vector-Tensor theories, while allowing for an independent bound on the graviton mass in bimetric theories of gravity.
Abstract: Theorists have tightly constrained alternative theories of gravity using the recent joint detection of gravitational waves and light from a neutron star merger.

794 citations

Journal ArticleDOI
TL;DR: In this article, a Markov Chain Monte-Carlo search of the parameter space for the EDE parameters, in conjunction with the standard cosmological parameters, identifies regions in which H = 0.
Abstract: Early dark energy (EDE) that behaves like a cosmological constant at early times (redshifts z≳3000) and then dilutes away like radiation or faster at later times can solve the Hubble tension. In these models, the sound horizon at decoupling is reduced resulting in a larger value of the Hubble parameter H_{0} inferred from the cosmic microwave background (CMB). We consider two physical models for this EDE, one involving an oscillating scalar field and another a slowly rolling field. We perform a detailed calculation of the evolution of perturbations in these models. A Markov Chain Monte Carlo search of the parameter space for the EDE parameters, in conjunction with the standard cosmological parameters, identifies regions in which H_{0} inferred from Planck CMB data agrees with the SH0ES local measurement. In these cosmologies, current baryon acoustic oscillation and supernova data are described as successfully as in the cold dark matter model with a cosmological constant, while the fit to Planck data is slightly improved. Future CMB and large-scale-structure surveys will further probe this scenario.

657 citations