scispace - formally typeset
Search or ask a question
Author

Janis Racevskis

Bio: Janis Racevskis is an academic researcher from Albert Einstein College of Medicine. The author has contributed to research in topics: Leukemia & Population. The author has an hindex of 16, co-authored 22 publications receiving 3674 citations. Previous affiliations of Janis Racevskis include New York Medical College & Montefiore Medical Center.

Papers
More filters
Journal ArticleDOI
TL;DR: Genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, are identified and the significance of these predictors in an independent cohort is validated.
Abstract: We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P = 0.001 for FLT3-ITD, P = 0.009 for MLL-PTD, P = 0.05 for ASXL1, and P = 0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P = 0.05 for CEBPA and P = 0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standarddose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P = 0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P = 0.67). Conclusions We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with AML. (Funded by the National Cancer Institute and others.)

1,726 citations

Journal ArticleDOI
TL;DR: In young adults with AML, intensifying induction therapy with a high daily dose of daunorubicin improved the rate of complete remission and the duration of overall survival, as compared with the standard dose.
Abstract: Background In young adults with acute myeloid leukemia (AML), intensification of the anthracycline dose during induction therapy has improved the rate of complete remission but not of overall survival. We evaluated the use of cytarabine plus either standard-dose or high-dose daunorubicin as induction therapy, followed by intensive consolidation therapy, in inducing complete remission to improve overall survival. Methods In this phase 3 randomized trial, we assigned 657 patients between the ages of 17 and 60 years who had untreated AML to receive three once-daily doses of daunorubicin at either the standard dose (45 mg per square meter of body-surface area) or a high dose (90 mg per square meter), combined with seven daily doses of cytarabine (100 mg per square meter) by continuous intravenous infusion. Patients who had a complete remission were offered either allogeneic hematopoietic stem-cell transplantation or high-dose cytarabine, with or without a single dose of the monoclonal antibody gemtuzumab ozog...

755 citations

Journal ArticleDOI
TL;DR: Analysis of 1,988 cases of B-cell acute lymphoblastic leukemia characterizes 23 subtypes defined by genomic features and shows that two of the subtypes have frequent PAX5 alterations, demonstrating the utility of transcriptome sequencing to classify B-ALL.
Abstract: Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis.

322 citations

Journal ArticleDOI
TL;DR: A prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL is supported.
Abstract: Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.

293 citations

Journal ArticleDOI
TL;DR: It is demonstrated that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucoc Corticoid therapy, and pharmacologic inhibition of AKT with MK2206 effectively reverses glucocORTicoid resistance.

223 citations


Cited by
More filters
Journal ArticleDOI
19 May 2016-Blood
TL;DR: The 2016 edition of the World Health Organization classification of tumors of the hematopoietic and lymphoid tissues represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition.

7,147 citations

Journal ArticleDOI
Timothy J. Ley1, Christopher A. Miller1, Li Ding1, Benjamin J. Raphael2, Andrew J. Mungall3, Gordon Robertson3, Katherine A. Hoadley4, Timothy J. Triche5, Peter W. Laird5, Jack Baty1, Lucinda Fulton1, Robert S. Fulton1, Sharon Heath1, Joelle Kalicki-Veizer1, Cyriac Kandoth1, Jeffery M. Klco1, Daniel C. Koboldt1, Krishna L. Kanchi1, Shashikant Kulkarni1, Tamara Lamprecht1, David E. Larson1, G. Lin1, Charles Lu1, Michael D. McLellan1, Joshua F. McMichael1, Jacqueline E. Payton1, Heather Schmidt1, David H. Spencer1, Michael H. Tomasson1, John W. Wallis1, Lukas D. Wartman1, Mark A. Watson1, John S. Welch1, Michael C. Wendl1, Adrian Ally3, Miruna Balasundaram3, Inanc Birol3, Yaron S.N. Butterfield3, Readman Chiu3, Andy Chu3, Eric Chuah3, Hye Jung E. Chun3, Richard Corbett3, Noreen Dhalla3, Ranabir Guin3, An He3, Carrie Hirst3, Martin Hirst3, Robert A. Holt3, Steven J.M. Jones3, Aly Karsan3, Darlene Lee3, Haiyan I. Li3, Marco A. Marra3, Michael Mayo3, Richard A. Moore3, Karen Mungall3, Jeremy Parker3, Erin Pleasance3, Patrick Plettner3, Jacquie Schein3, Dominik Stoll3, Lucas Swanson3, Angela Tam3, Nina Thiessen3, Richard Varhol3, Natasja Wye3, Yongjun Zhao3, Stacey Gabriel6, Gad Getz6, Carrie Sougnez6, Lihua Zou6, Mark D.M. Leiserson2, Fabio Vandin2, Hsin-Ta Wu2, Frederick Applebaum7, Stephen B. Baylin8, Rehan Akbani9, Bradley M. Broom9, Ken Chen9, Thomas C. Motter9, Khanh Thi-Thuy Nguyen9, John N. Weinstein9, Nianziang Zhang9, Martin L. Ferguson, Christopher Adams10, Aaron D. Black10, Jay Bowen10, Julie M. Gastier-Foster10, Thomas Grossman10, Tara M. Lichtenberg10, Lisa Wise10, Tanja Davidsen11, John A. Demchok11, Kenna R. Mills Shaw11, Margi Sheth11, Heidi J. Sofia, Liming Yang11, James R. Downing, Greg Eley, Shelley Alonso12, Brenda Ayala12, Julien Baboud12, Mark Backus12, Sean P. Barletta12, Dominique L. Berton12, Anna L. Chu12, Stanley Girshik12, Mark A. Jensen12, Ari B. Kahn12, Prachi Kothiyal12, Matthew C. Nicholls12, Todd Pihl12, David Pot12, Rohini Raman12, Rashmi N. Sanbhadti12, Eric E. Snyder12, Deepak Srinivasan12, Jessica Walton12, Yunhu Wan12, Zhining Wang12, Jean Pierre J. Issa13, Michelle M. Le Beau14, Martin Carroll15, Hagop M. Kantarjian, Steven M. Kornblau, Moiz S. Bootwalla5, Phillip H. Lai5, Hui Shen5, David Van Den Berg5, Daniel J. Weisenberger5, Daniel C. Link1, Matthew J. Walter1, Bradley A. Ozenberger11, Elaine R. Mardis1, Peter Westervelt1, Timothy A. Graubert1, John F. DiPersio1, Richard K. Wilson1 
TL;DR: It is found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients and the databases from this study are widely available to serve as a foundation for further investigations of AMl pathogenesis, classification, and risk stratification.
Abstract: BACKGROUND—Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined The relationships between patterns of mutations and epigenetic phenotypes are not yet clear METHODS—We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis RESULTS—AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes Of these, an average of 5 are in genes that are recurrently mutated in AML A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcriptionfactor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumorsuppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%) Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories CONCLUSIONS—We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification (Funded by the National Institutes of Health) The molecular pathogenesis of acute myeloid leukemia (AML) has been studied with the use of cytogenetic analysis for more than three decades Recurrent chromosomal structural variations are well established as diagnostic and prognostic markers, suggesting that acquired genetic abnormalities (ie, somatic mutations) have an essential role in pathogenesis 1,2 However, nearly 50% of AML samples have a normal karyotype, and many of these genomes lack structural abnormalities, even when assessed with high-density comparative genomic hybridization or single-nucleotide polymorphism (SNP) arrays 3-5 (see Glossary) Targeted sequencing has identified recurrent mutations in FLT3, NPM1, KIT, CEBPA, and TET2 6-8 Massively parallel sequencing enabled the discovery of recurrent mutations in DNMT3A 9,10 and IDH1 11 Recent studies have shown that many patients with

3,980 citations

Journal ArticleDOI
TL;DR: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification.
Abstract: BackgroundRecent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. MethodsWe enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. ResultsWe identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or b...

2,834 citations

Journal ArticleDOI
06 Jul 2012-Cell
TL;DR: The basic principles behind DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated targeting are presented and the evidence suggesting that their misregulation can culminate in cancer is highlighted.

2,501 citations