scispace - formally typeset
Search or ask a question
Author

Janneke HilleRisLambers

Bio: Janneke HilleRisLambers is an academic researcher from University of Washington. The author has contributed to research in topics: Climate change & Global warming. The author has an hindex of 37, co-authored 73 publications receiving 8958 citations. Previous affiliations of Janneke HilleRisLambers include University of California, Santa Barbara & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that experimental manipulations of the abiotic or biotic environment, assessments of trait-phylogeny-environment relationships, and investigations of frequency-dependent population growth all suggest strong influences of stabilizing niche differences and fitness differences on the outcome of plant community assembly.
Abstract: Although research on the role of competitive interactions during community assembly began decades ago, a recent revival of interest has led to new discoveries and research opportunities. Using contemporary coexistence theory that emphasizes stabilizing niche differences and relative fitness differences, we evaluate three empirical approaches for studying community assembly. We show that experimental manipulations of the abiotic or biotic environment, assessments of trait-phylogeny-environment relationships, and investigations of frequency-dependent population growth all suggest strong influences of stabilizing niche differences and fitness differences on the outcome of plant community assembly. Nonetheless, due to the limitations of these approaches applied in isolation, we still have a poor understanding of which niche axes and which traits determine the outcome of competition and community structure. Combining current approaches represents our best chance of achieving this goal, which is fundamental to conceptual ecology and to the management of plant communities under global change.

1,065 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality) for coexistence.
Abstract: Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence.

956 citations

Journal ArticleDOI
01 Jul 1999-Ecology
TL;DR: This paper presented a mixture model of dispersal that assumes a range of disperal patterns, both local and long distance, and compared the mixture model with classical models of seed dispersal.
Abstract: Dispersal affects community dynamics and vegetation response to global change. Understanding these effects requires descriptions of dispersal at local and regional scales and statistical models that permit estimation. Classical models of dispersal describe local or long-distance dispersal, but not both. The lack of statistical methods means that models have rarely been fitted to seed dispersal in closed forests. We present a mixture model of dispersal that assumes a range of disperal patterns, both local and long distance. The bivariate Student’s t or “2Dt” follows from an assumption that the distance parameter in a Gaussian model varies randomly, thus having a density of its own. We use an inverse approach to “compete” our mixture model against classical alternatives, using seed rain databases from temperate broadleaf, temperate mixed-conifer, and tropical floodplain forests. For most species, the 2Dt model fits dispersal data better than do classical models. The superior fit results from the potential f...

858 citations

Journal ArticleDOI
03 Jun 2011-Science
TL;DR: It is shown that a highly structured course design, based on daily and weekly practice with problem-solving, data analysis, and other higher-order cognitive skills, improved the performance of all students in a college-level introductory biology class and reduced the achievement gap between disadvantaged and nondisadvantaged students—without increased expenditures.
Abstract: Science, technology, engineering, and mathematics instructors have been charged with improving the performance and retention of students from diverse backgrounds. To date, programs that close the achievement gap between students from disadvantaged versus nondisadvantaged educational backgrounds have required extensive extramural funding. We show that a highly structured course design, based on daily and weekly practice with problem-solving, data analysis, and other higher-order cognitive skills, improved the performance of all students in a college-level introductory biology class and reduced the achievement gap between disadvantaged and nondisadvantaged students--without increased expenditures. These results support the Carnegie Hall hypothesis: Intensive practice, via active-learning exercises, has a disproportionate benefit for capable but poorly prepared students.

728 citations

Journal ArticleDOI
10 Sep 2009-Nature
TL;DR: This work uses field-parameterized population models to develop a null expectation for community dynamics without the stabilizing effects of niche differences, and shows that niche differences collectively stabilize the dynamics of experimental communities of serpentine annual plants.
Abstract: If organisms are involved in a perpetual struggle for existence, how is it that communities are so diverse? The traditional answer is the ecological 'niche' — even at very small scales, environmental differences are enough to allow different species to coexist. Recently, the 'neutral theory' of biodiversity has suggested that this explanation is too complicated, and species are distributed more by chance effects. Jonathan Levine and Janneke HilleRisLambers test these ideas with an intriguing mix of experiment and theory, showing that diversity declines when niches are removed: in this round, at least, traditional explanations have the edge. If organisms are involved in a perpetual struggle for existence, how is it that communities are so diverse? The traditional answer is the ecological niche but this has recently been challenged by the neutral theory of biodiversity, which explains coexistence with the equivalence of competitors. Here, theory and experimentation are integrated in order to explore this problem; the results show that diversity declines when niches are removed. Ecological communities characteristically contain a wide diversity of species with important functional, economic and aesthetic value. Ecologists have long questioned how this diversity is maintained1,2,3. Classic theory shows that stable coexistence requires competitors to differ in their niches4,5,6; this has motivated numerous investigations of ecological differences presumed to maintain diversity3,6,7,8. That niche differences are key to coexistence, however, has recently been challenged by the neutral theory of biodiversity, which explains coexistence with the equivalence of competitors9. The ensuing controversy has motivated calls for a better understanding of the collective importance of niche differences for the diversity observed in ecological communities10,11. Here we integrate theory and experimentation to show that niche differences collectively stabilize the dynamics of experimental communities of serpentine annual plants. We used field-parameterized population models to develop a null expectation for community dynamics without the stabilizing effects of niche differences. The population growth rates predicted by this null model varied by several orders of magnitude between species, which is sufficient for rapid competitive exclusion. Moreover, after two generations of community change in the field, Shannon diversity was over 50 per cent greater in communities stabilized by niche differences relative to those exhibiting dynamics predicted by the null model. Finally, in an experiment manipulating species’ relative abundances, population growth rates increased when species became rare—the demographic signature of niche differences. Our work thus provides strong evidence that species differences have a critical role in stabilizing species diversity.

679 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The analysis supports theory claiming that calls to increase the number of students receiving STEM degrees could be answered, at least in part, by abandoning traditional lecturing in favor of active learning and supports active learning as the preferred, empirically validated teaching practice in regular classrooms.
Abstract: creased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

5,474 citations

Journal ArticleDOI
TL;DR: Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity, but recent studies also dispute the idea that 'everything is everywhere'.
Abstract: We review the biogeography of microorganisms in light of the biogeography of macroorganisms A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity However, recent studies also dispute the idea that 'everything is everywhere' We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world

2,456 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations