scispace - formally typeset
Search or ask a question
Author

Jannie S.J. van Deventer

Other affiliations: Los Alamos National Laboratory
Bio: Jannie S.J. van Deventer is an academic researcher from University of Melbourne. The author has contributed to research in topics: Geopolymer & Fly ash. The author has an hindex of 62, co-authored 124 publications receiving 14452 citations. Previous affiliations of Jannie S.J. van Deventer include Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the potential position of and drivers for inorganic polymers (“geopolymers”) as an element of the push for a sustainable concrete industry are discussed.

1,444 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanistic model accounting for reduced structural reorganization and densification in the microstructure of geopolymer gels with high concentrations of soluble silicon in the activating solution has been proposed.

1,309 citations

Journal ArticleDOI
TL;DR: The microstructural evolution of alkali-activated binders based on blast furnace slag, fly ash and their blends during the first six months of sealed curing is assessed in this article.
Abstract: The microstructural evolution of alkali-activated binders based on blast furnace slag, fly ash and their blends during the first six months of sealed curing is assessed. The nature of the main binding gels in these blends shows distinct characteristics with respect to binder composition. It is evident that the incorporation of fly ash as an additional source of alumina and silica, but not calcium, in activated slag binders affects the mechanism and rate of formation of the main binding gels. The rate of formation of the main binding gel phases depends strongly on fly ash content. Pastes based solely on silicate-activated slag show a structure dominated by a C–A–S–H type gel, while silicate-activated fly ash are dominated by N–A–S–H ‘geopolymer’ gel. Blended slag-fly ash binders can demonstrate the formation of co-existing C–A–S–H and geopolymer gels, which are clearly distinguishable at earlier age when the binder contains no more than 75 wt.% fly ash. The separation in chemistry between different regions of the gel becomes less distinct at longer age. With a slower overall reaction rate, a 1:1 slag:fly ash system shares more microstructural features with a slag-based binder than a fly ash-based binder, indicating the strong influence of calcium on the gel chemistry, particularly with regard to the bound water environments within the gel. However, in systems with similar or lower slag content, a hybrid type gel described as N–(C)–A–S–H is also identified, as part of the Ca released by slag dissolution is incorporated into the N–A–S–H type gel resulting from fly ash activation. Fly ash-based binders exhibit a slower reaction compared to activated-slag pastes, but extended times of curing promote the formation of more cross-linked binding products and a denser microstructure. This mechanism is slower for samples with lower slag content, emphasizing the correct selection of binder proportions in promoting a well-densified, durable solid microstructure.

736 citations

Journal ArticleDOI
TL;DR: The exact physicochemical nature of the geopolymeric binder phase has never before been determined as discussed by the authors, but it is known that it is composed of agglomerates of nanocrystalline zeolites compacted by an amorphous gel phase.
Abstract: Geopolymers are a class of aluminosilicate materials synthesized by alkaline or alkali-silicate activation of solid alumina- and silica-containing precursor materials at ambient or higher temperature. These products have highly significant commercial and technological potential, but the exact physicochemical nature of the geopolymeric binder phase has never before been determined. Through analysis of existing experimental results from the literature and comparison with related systems, in particular the hydrothermal synthesis of zeolites, geopolymeric binders are identified as being comprised of agglomerates of nanocrystalline zeolites compacted by an amorphous gel phase. The degree of crystallinity is largely determined by product formulation and synthesis conditions. Results from powder X-ray diffraction, microscopy, electron diffraction, mechanical strength testing, and calorimetry are analyzed and shown to be consistent with the theory presented. The implications of nanocrystallinity are discussed, an...

653 citations

Journal ArticleDOI
TL;DR: In the absence of an in-service track record comparable in scale and longevity to Portland cement, research is essential to validate durability testing methodology and improve geopolymer cement technology Colloid and interface science, gel chemistry, phase formation, reaction kinetics, transport phenomena, comminution, particle packing and rheology.

595 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: A brief history and review of geopolymer technology is presented with the aim of introducing the technology and the vast categories of materials that may be synthesized by alkali activation of aluminosilicates as mentioned in this paper.
Abstract: A brief history and review of geopolymer technology is presented with the aim of introducing the technology and the vast categories of materials that may be synthesized by alkali-activation of aluminosilicates. The fundamental chemical and structural characteristics of geopolymers derived from metakaolin, fly ash and slag are explored in terms of the effects of raw material selection on the properties of geopolymer composites. It is shown that the raw materials and processing conditions are critical in determining the setting behavior, workability and chemical and physical properties of geopolymeric products. The structural and chemical characteristics that are common to all geopolymeric materials are presented, as well as those that are determined by the specific interactions occurring in different systems, providing the ability for tailored design of geopolymers to specific applications in terms of both technical and commercial requirements.

3,302 citations

Journal ArticleDOI
TL;DR: In this paper, the potential position of and drivers for inorganic polymers (“geopolymers”) as an element of the push for a sustainable concrete industry are discussed.

1,444 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanistic model accounting for reduced structural reorganization and densification in the microstructure of geopolymer gels with high concentrations of soluble silicon in the activating solution has been proposed.

1,309 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the results of comprehensive carbon footprint estimates for both geopolymer and OPC concrete, including energy expending activities associated with mining and transport of raw materials, manufacturing and concrete construction.

1,274 citations