scispace - formally typeset
Search or ask a question
Author

Jannis Krumland

Bio: Jannis Krumland is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Excited state & Density functional theory. The author has an hindex of 5, co-authored 13 publications receiving 60 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In a combined optical and electron paramagnetic resonance study, it is shown that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in the formation of P3HT radical cations (polarons) for all the dopants considered here.
Abstract: The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are inv

46 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local density approximation.
Abstract: Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.

17 citations

Journal ArticleDOI
TL;DR: This work analyzes the ultrafast dynamics of three small molecules excited by a resonant laser pulse in the framework of the adiabatic local-density approximation and observes that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.
Abstract: Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities, in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein while the coherent vibrational motion contributes to stabilize the electronic excitation already within a few tens of femtoseconds.

15 citations

Journal ArticleDOI
10 Apr 2020
TL;DR: In this paper, the hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics and interfacial charge transfer is primarily responsible for their peculiar properties.
Abstract: Hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics. Interfacial charge transfer is primarily responsible for their peculiar ele...

12 citations

Journal ArticleDOI
TL;DR: In this article, the effects and the mutual interplay of solvation, alkylization, and doping on the structural, electronic, and optical properties of sexithiophene, a representative organic semiconductor molecule, were investigated.
Abstract: The first-principles simulation of the electronic structure of organic semiconductors in solution poses a number of challenges that are not trivial to address simultaneously. In this work, we investigate the effects and the mutual interplay of solvation, alkylization, and doping on the structural, electronic, and optical properties of sexithiophene, a representative organic semiconductor molecule. To this end, we employ (time-dependent) density functional theory in conjunction with the polarizable-continuum model. We find that the torsion between adjacent monomer units plays a key role, as it strongly influences the electronic structure of the molecule, including energy gap, ionization potential, and band widths. Alkylization promotes delocalization of the molecular orbitals up to the first methyl unit, regardless of the chain length, leading to an overall shift of the energy levels. The alterations in the electronic structure are reflected in the optical absorption, which is additionally affected by dynamical solute–solvent interactions. Taking all these effects into account, solvents decrease the optical gap by an amount that depends on its polarity, and concomitantly increase the oscillator strength of the first excitation. The interaction with a dopant molecule promotes planarization. In such scenario, solvation and alkylization enhance charge transfer both in the ground state and in the excited state.

10 citations


Cited by
More filters
Posted Content
TL;DR: It is observed that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach and that with a judicious choice of starting mean- field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods.
Abstract: The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased, and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely-used time-dependent density functional theory benchmark set [M. Schreiber et al. J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step, and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory.

92 citations

Journal ArticleDOI
01 Jan 2010-Chimia
TL;DR: Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following.
Abstract: Computer-based and theoretical approaches to chemical problems can provide atomistic understanding of complex processes at the molecular level. Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following. They highlight the range of application of theoretical and computational methods to current questions in chemical research.

49 citations

Journal Article
TL;DR: This work illustrates xc memory effects, clarify the dissipation mechanism, and extracts intersubband relaxation rates for weak and strong excitations in time-dependent density-functional theory.
Abstract: In time-dependent density-functional theory, exchange and correlation (xc) beyond the adiabatic approximation can be described by viscoelastic stresses in the electron liquid. In the time domain, the resulting velocity-dependent xc vector potential has a memory containing short- and long-range components, leading to decoherence and energy relaxation. We solve the associated time-dependent Kohn-Sham equations, including the dependence on densities and currents at previous times, for the case of charge-density oscillations in a quantum well. We illustrate xc memory effects, clarify the dissipation mechanism, and extract intersubband relaxation rates for weak and strong excitations.

36 citations

Journal ArticleDOI
08 Oct 2021
TL;DR: In this article, a unified methodology for the parameter-free calculations of phonon-limited drift and Hall carrier mobilities in real materials within the framework of the Boltzmann transport equation is presented.
Abstract: Carrier mobility is at the root of our understanding of electronic devices. We present a unified methodology for the parameter-free calculations of phonon-limited drift and Hall carrier mobilities in real materials within the framework of the Boltzmann transport equation. This approach enables accurate and parameter-free calculations of the intrinsic mobility and will find applications in the design of electronic devices under realistic conditions of strain and temperature. The methodology exploits a novel approach for incorporating the effect of long-range quadrupole fields in the electron-phonon scattering rates and capitalizes on a rigorous and efficient procedure for numerical convergence. The accuracy reached in this work allows us to assess the impact of common approximations employed in transport calculations, including the role of exchange and correlation functionals, spin-orbit coupling, pseudopotentials, Wannier interpolation, Brillouin-zone sampling, dipole and quadrupole corrections, and the relaxation-time approximation. We study diamond, silicon, GaAs, 3C-SiC, AlP, GaP, c-BN, AlAs, AlSb, and SrO, and find that our most accurate calculations predict Hall mobilities significantly larger than the experimental data in the case of SiC, AlAs, and GaP. We identify possible improvements to the theoretical and computational frameworks to reduce this discrepancy, and we argue that new experimental data are needed to perform a meaningful comparison, since almost all existing data are more than two decades old. By setting tight standards for reliability and reproducibility, the present work aims to facilitate validation and verification of data and software towards predictive calculations of transport phenomena in semiconductors.

31 citations

Journal ArticleDOI
TL;DR: In this article, the potential of three borane Lewis acids (LAs) (B(C6F5)3 (BCF), BF3, and BBr3) to form stable adducts and/or to generate positive polarons with three different semiconducting π-conjugated polymers (PFPT, PCPDTPT and PCPDTBT) was investigated.
Abstract: We report on computational studies of the potential of three borane Lewis acids (LAs) (B(C6F5)3 (BCF), BF3, and BBr3) to form stable adducts and/or to generate positive polarons with three different semiconducting π-conjugated polymers (PFPT, PCPDTPT and PCPDTBT). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations based on range-separated hybrid (RSH) functionals provide insight into changes in the electronic structure and optical properties upon adduct formation between LAs and the two polymers containing pyridine moieties, PFPT and PCPDTPT, unravelling the complex interplay between partial hybridization, charge transfer and changes in the polymer backbone conformation. We then assess the potential of BCF to induce p-doping in PCPDTBT, which does not contain pyridine groups, by computing the energetics of various reaction mechanisms proposed in the literature. We find that reaction of BCF(OH2) to form protonated PCPDTBT and [BCF(OH)]−, followed by electron transfer from a pristine to a protonated PCPDTBT chain is highly endergonic, and thus unlikely at low doping concentration. The theoretical and experimental data can, however, be reconciled if one considers the formation of [BCF(OH)BCF]− or [BCF(OH)(OH2)BCF]− counterions rather than [BCF(OH)]− and invokes subsequent reactions resulting in the elimination of H2.

18 citations