scispace - formally typeset
Search or ask a question
Author

Jari M. Kinaret

Bio: Jari M. Kinaret is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Graphene & Quantum dot. The author has an hindex of 27, co-authored 88 publications receiving 4718 citations. Previous affiliations of Jari M. Kinaret include University of Gothenburg & Nokia.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
28 Aug 2009-Science
TL;DR: The mechanical oscillations of a suspended single-walled carbon nanotube that also acts as a single-electron transistor are investigated, and the coupling is strong enough to drive the oscillations in the nonlinear regime.
Abstract: Nanoelectromechanical resonators have potential applications in sensing, cooling, and mechanical signal processing. An important parameter in these systems is the strength of coupling the resonator motion to charge transport through the device. We investigated the mechanical oscillations of a suspended single-walled carbon nanotube that also acts as a single-electron transistor. The coupling of the mechanical and the charge degrees of freedom is strikingly strong as well as widely tunable (the associated damping rate is ~3 MHz). In particular, the coupling is strong enough to drive the oscillations in the nonlinear regime.

324 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the operational characteristics of a nanorelay based on a conducting carbon nanotube placed on a terrace in a silicon substrate, which is a three-terminal device that acts as a switch in the gigahertz regime.
Abstract: We investigate the operational characteristics of a nanorelay based on a conducting carbon nanotube placed on a terrace in a silicon substrate. The nanorelay is a three-terminal device that acts as a switch in the gigahertz regime. Potential applications include logic devices, memory elements, pulse generators, and current or voltage amplifiers.

267 citations

Journal ArticleDOI
TL;DR: Coulomb interactions are shown to influence the addition spectrum of a small electron gas in the quantum Hall regime in ways that cannot be described by a classical charging energy.
Abstract: Coulomb interactions are shown to influence the addition spectrum of a small electron gas in the quantum Hall regime in ways that cannot be described by a classical charging energy. The interaction energy between electrons is observed to depend upon Landau-level index, and the evolution of the addition spectrum with magnetic field is found to depend strongly on Coulomb interactions. A self-consistent model of the island is introduced that can account for these results.

183 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchy of simplified continuum elasticity descriptions for modeling the mechanical properties of suspended graphene sheets is derived, and validated by applying them to square graphene-based resonators with clamped edges and studying numerically their mechanical responses.
Abstract: Starting from an atomistic approach, we have derived a hierarchy of successively more simplified continuum elasticity descriptions for modeling the mechanical properties of suspended graphene sheets. We find that already for deflections of the order of 0.5 A a theory that correctly accounts for nonlinearities is necessary and that for many purposes a set of coupled Duffing-type equations may be used to accurately describe the dynamics of graphene membranes. The descriptions are validated by applying them to square graphene-based resonators with clamped edges and studying numerically their mechanical responses. Both static and dynamic responses are treated, and we find good agreement with recent experimental findings.

177 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Abstract: Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides

3,025 citations

Journal ArticleDOI
02 Jan 2015-Science
TL;DR: Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices.
Abstract: Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications.

2,850 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress in 2D materials beyond graphene and includes mainly transition metal dichalcogenides (TMDs) (e.g., MoS2, WS2, MoSe2, and WSe2).

1,728 citations