scispace - formally typeset
Search or ask a question
Author

Jari P. Kaipio

Bio: Jari P. Kaipio is an academic researcher from University of Auckland. The author has contributed to research in topics: Inverse problem & Electrical impedance tomography. The author has an hindex of 49, co-authored 270 publications receiving 10666 citations. Previous affiliations of Jari P. Kaipio include GE Healthcare & University of Eastern Finland.


Papers
More filters
Book
01 Dec 2004
TL;DR: Inverse Problems and Interpretation of Measurements: Inverse problems and interpretation of measurements as mentioned in this paper, classical regularization methods, Statistical Inversion Theory, Nonstationary Inverse Problems, Classical Methods Revisited, Model Problems.
Abstract: Inverse Problems and Interpretation of Measurements.- Classical Regularization Methods.- Statistical Inversion Theory.- Nonstationary Inverse Problems.- Classical Methods Revisited.- Model Problems.- Case Studies.

1,825 citations

Journal ArticleDOI
TL;DR: The authors propose an approach to the construction of the regularization matrix that conforms to the prior assumptions on the impedance distribution based on theConstruction of an approximating subspace for the expected impedance distributions.
Abstract: The solution of impedance distribution in electrical impedance tomography is a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization methods have been popular in the solution of many inverse problems. The regularization matrices that are usually used with the Tikhonov method are more or less ad hoc and the implicit prior assumptions are, thus, in many cases inappropriate. In this paper, the authors propose an approach to the construction of the regularization matrix that conforms to the prior assumptions on the impedance distribution. The approach is based on the construction of an approximating subspace for the expected impedance distributions. It is shown by simulations that the reconstructions obtained with the proposed method are better than with two other schemes of the same type when the prior is compatible with the true object. On the other hand, when the prior is incompatible with the true object, the method will still give reasonable estimates.

530 citations

Journal ArticleDOI
TL;DR: In this paper, the discretization of linear inverse problems is discussed, and the Bayesian paradigm is used to estimate the statistics of the Discretization error that is made part of the measurement and modelling errors of the estimation problem.

508 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the electrical impedance tomography (EIT) problem in the framework of Bayesian statistics, where the inverse problem is recast into a form of statistical inference.
Abstract: This paper discusses the electrical impedance tomography (EIT) problem: electric currents are injected into a body with unknown electromagnetic properties through a set of contact electrodes. The corresponding voltages that are needed to maintain these currents are measured. The objective is to estimate the unknown resistivity, or more generally the impedivity distribution of the body based on this information. The most commonly used method to tackle this problem in practice is to use gradient-based local linearizations. We give a proof for the differentiability of the electrode boundary data with respect to the resistivity distribution and the contact impedances. Due to the ill-posedness of the problem, regularization has to be employed. In this paper, we consider the EIT problem in the framework of Bayesian statistics, where the inverse problem is recast into a form of statistical inference. The problem is to estimate the posterior distribution of the unknown parameters conditioned on measurement data. From the posterior density, various estimates for the resistivity distribution can be calculated as well as a posteriori uncertainties. The search of the maximum a posteriori estimate is typically an optimization problem, while the conditional expectation is computed by integrating the variable with respect to the posterior probability distribution. In practice, especially when the dimension of the parameter space is large, this integration must be done by Monte Carlo methods such as the Markov chain Monte Carlo (MCMC) integration. These methods can also be used for calculation of a posteriori uncertainties for the estimators. In this paper, we concentrate on MCMC integration methods. In particular, we demonstrate by numerical examples the statistical approach when the prior densities are non-differentiable, such as the prior penalizing the total variation or the L1 norm of the resistivity.

386 citations

Journal ArticleDOI
TL;DR: This paper proposes a finite element-based method for the reconstruction of three-dimensional resistivity distributions based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances and results from static and dynamic reconstructions with real measurement data are given.
Abstract: In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.

343 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of the work in electrical impedance tomography can be found in this article, where the authors survey some of the most important works in the field. Butt.t.
Abstract: t. This paper surveys some of the work our group has done in electrical impedance tomography.

1,726 citations

Journal ArticleDOI
TL;DR: The underlying models currently used in MEG/EEG source estimation are described and the various signal processing steps required to compute these sources are described.
Abstract: There has been tremendous advances in our ability to produce images of human brain function. Applications of functional brain imaging extend from improving our understanding of the basic mechanisms of cognitive processes to better characterization of pathologies that impair normal function. Magnetoencephalography (MEG) and electroencephalography (EEG) (MEG/EEG) localize neural electrical activity using noninvasive measurements of external electromagnetic signals. Among the available functional imaging techniques, MEG and EEG uniquely have temporal resolutions below 100 ms. This temporal precision allows us to explore the timing of basic neural processes at the level of cell assemblies. MEG/EEG source localization draws on a wide range of signal processing techniques including digital filtering, three-dimensional image analysis, array signal processing, image modeling and reconstruction, and, blind source separation and phase synchrony estimation. We describe the underlying models currently used in MEG/EEG source estimation and describe the various signal processing steps required to compute these sources. In particular we describe methods for computing the forward fields for known source distributions and parametric and imaging-based approaches to the inverse problem.

1,702 citations

Journal ArticleDOI
TL;DR: The Bayesian approach to regularization is reviewed, developing a function space viewpoint on the subject, which allows for a full characterization of all possible solutions, and their relative probabilities, whilst simultaneously forcing significant modelling issues to be addressed in a clear and precise fashion.
Abstract: The subject of inverse problems in differential equations is of enormous practical importance, and has also generated substantial mathematical and computational innovation. Typically some form of regularization is required to ameliorate ill-posed behaviour. In this article we review the Bayesian approach to regularization, developing a function space viewpoint on the subject. This approach allows for a full characterization of all possible solutions, and their relative probabilities, whilst simultaneously forcing significant modelling issues to be addressed in a clear and precise fashion. Although expensive to implement, this approach is starting to lie within the range of the available computational resources in many application areas. It also allows for the quantification of uncertainty and risk, something which is increasingly demanded by these applications. Furthermore, the approach is conceptually important for the understanding of simpler, computationally expedient approaches to inverse problems.

1,695 citations

DOI
31 May 2023
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

1,373 citations

Journal ArticleDOI
TL;DR: The aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI, and provides an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements.

1,333 citations