scispace - formally typeset
Search or ask a question
Author

Jari Turunen

Bio: Jari Turunen is an academic researcher from University of Eastern Finland. The author has contributed to research in topics: Diffraction efficiency & Diffraction. The author has an hindex of 51, co-authored 451 publications receiving 10621 citations. Previous affiliations of Jari Turunen include Helsinki University of Technology & Heriot-Watt University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work shows by the method of stationary phase that any of these wave fields can be realized approximately with a laser and a single computer-generated hologram, and demonstrates experimentally the formation of arbitrary-order Bessel beams and rotationally nonsymmetric beams.
Abstract: A new class of solutions to the scalar wave equation was introduced recently that represents transversely localized but totally nondiffracting fields. We show by the method of stationary phase that any of these wave fields can be realized approximately with a laser and a single computer-generated hologram. We briefly discuss various techniques for coding and fabrication of the required hologram and the associated diffraction efficiencies. Using both binary-amplitude and four-level phase holograms, we demonstrate experimentally the formation of arbitrary-order Bessel beams and rotationally nonsymmetric beams.

668 citations

Journal ArticleDOI
TL;DR: In contradiction with recently suggested interpretation of experiments on larger scale but otherwise similar structures, the observed polarization phenomena violate neither reciprocity nor time-reversal symmetry.
Abstract: We examine the spectral dependence in the visible frequency range of the polarization rotation of two-dimensional gratings consisting of chiral gold nanostructures with subwavelength features The gratings, which do not diffract, are shown to exhibit giant specific rotation ($\ensuremath{\sim}{10}^{4}\ifmmode^\circ\else\textdegree\fi{}/\mathrm{mm}$) of polarization in direct transmission at normal incidence The rotation is the same for light incident on the front and back sides of the sample Such reciprocity indicates three dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces The structures thus enable polarization control with quasi-two-dimensional planar objects However, in contradiction with recently suggested interpretation of experiments on larger scale but otherwise similar structures, the observed polarization phenomena violate neither reciprocity nor time-reversal symmetry

570 citations

Journal ArticleDOI
TL;DR: An analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field is deduced and the far-field intensity distribution is derived.
Abstract: We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity’s integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to ρ2n, where ρ is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n=2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

278 citations

Book
01 Jan 1997
TL;DR: Diffraction gratings for spectroscopy diffractive and hybrid lenses bifocal intraocular lenses laser material processing diffractive resonator optics optical testing diffractive laser diode optics diffractive optics for integrated optical sensing information processing and diffractive optic photorefractive crystals for optical metrology and optical data processing zeroth order devices security applications.
Abstract: Diffraction gratings for spectroscopy diffractive and hybrid lenses bifocal intraocular lenses laser material processing diffractive resonator optics optical testing diffractive laser diode optics diffractive optics for integrated optical sensing information processing and diffractive optics photorefractive crystals for optical metrology and optical data processing zeroth order devices security applications diffractive optics and solar cells holographic microlithography.

259 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations

Journal ArticleDOI
15 Mar 2012-Nature
TL;DR: It is shown that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices, and it is found that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plAsmon–plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres.
Abstract: Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.

1,838 citations

Journal ArticleDOI
TL;DR: It is shown here how CNTs formed following Halogenation, followed by Direct Formation on Defect Sites, and the subsequent Encapsulation of Inorganic Substances led to the formation of CNT’s with Metal Nanoparticles.
Abstract: 2.3. Ionic Liquids (ILs) 5374 2.4. Complexation Reactions on Oxidized CNTs 5375 2.5. Halogenation 5376 2.6. Cycloaddition Reactions 5377 2.7. Radical Additions 5379 2.8. Nucleophilic Additions 5381 2.9. Electrophilic Additions 5381 2.10. Electrochemical Modifications 5381 2.11. Plasma-Activation 5381 2.12. Mechanochemical Functionalizations 5382 3. Noncovalent Interactions 5382 3.1. Polynuclear Aromatic Compounds 5382 3.2. Interactions with Other Substances 5384 3.3. Interactions with Biomolecules 5385 4. Endohedral Filling 5386 4.1. Encapsulation of Fullerenes 5386 4.2. Encapsulation of Organic Substances 5387 4.3. Encapsulation of Inorganic Substances 5387 5. Decoration of CNTs with Metal Nanoparticles 5388 5.1. Covalent Linkage 5388 5.2. Direct Formation on Defect Sites 5388 5.3. Electroless Deposition 5388 5.4. Electrodeposition 5389 5.5. Chemical Decoration 5390 5.6. Deposition of Nanoparticles onto CNTs 5391 5.7. π-π Stacking and Electrostatic Interactions 5391 6. Concluding Remarks 5392 7. Acknowledgments 5392 8. References 5392

1,127 citations