scispace - formally typeset
Search or ask a question
Author

Jari Yli-Kauhaluoma

Bio: Jari Yli-Kauhaluoma is an academic researcher from University of Helsinki. The author has contributed to research in topics: Betulin & Protein kinase C. The author has an hindex of 36, co-authored 227 publications receiving 4502 citations. Previous affiliations of Jari Yli-Kauhaluoma include University of Oxford & Scripps Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A new mechanism of action has been confirmed for some of the most promising anti-HIV derivatives, which makes them potentially useful additives to the current anti- HIV therapy.

585 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed three lignin nanoparticles (LNPs): pure LNPs, iron-III-complexed LNNs, and Fe3O4-infused LNN.

271 citations

Journal ArticleDOI
TL;DR: Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, food processing, material and biosensor applications.
Abstract: Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

153 citations

Journal ArticleDOI
20 Mar 1998-Science
TL;DR: Docking experiments with the four possible ortho transition states of the reaction explain the specific exo effect and suggest that the (3R,4R)-exo stereoisomer is the preferred product.
Abstract: A highly specific Diels-Alder protein catalyst was made by manipulating the antibody repertoire of the immune system. The catalytic antibody 13G5 catalyzes a disfavored exo Diels-Alder transformation in a reaction for which there is no natural enzyme counterpart and that yields a single regioisomer in high enantiomeric excess. The crystal structure of the antibody Fab in complex with a ferrocenyl inhibitor containing the essential haptenic core that elicited 13G5 was determined at 1.95 angstrom resolution. Three key antibody residues appear to be responsible for the observed catalysis and product control. Tyrosine-L36 acts as a Lewis acid activating the dienophile for nucleophilic attack, and asparagine-L91 and aspartic acid-H50 form hydrogen bonds to the carboxylate side chain that substitutes for the carbamate diene substrate. This hydrogen-bonding scheme leads to rate acceleration and also pronounced stereoselectivity. Docking experiments with the four possible ortho transition states of the reaction explain the specific exo effect and suggest that the (3R,4R)-exo stereoisomer is the preferred product.

118 citations

Journal ArticleDOI
TL;DR: Analysis of athletes' urine samples found that the main reason for such false-positive results in doping tests was a low epitestosterone glucuronide concentration not a high level of testosterone glucuronides.
Abstract: Testosterone and epitestosterone are endogenous steroids that differ in the configuration of the hydroxyl-bearing carbon at C-17. Testosterone is the predominant male sex hormone, whereas the role of epitestosterone is largely unclear. In humans, both androgens are excreted mainly as glucuronide conjugates and the urinary ratio of testosterone to epitestosterone (T/E), used to expose illicit testosterone abuse by male athletes, indicates the relative concentrations of the respective glucuronides. Some male athletes have T/E values greater than the accepted threshold value (4.0), even without testosterone abuse. We have analyzed athletes9 urine samples and found that the main reason for such false-positive results in doping tests was a low epitestosterone glucuronide concentration not a high level of testosterone glucuronide. Sulfate conjugates of both testosterone and epitestosterone were also detected in the different urine samples. Glucuronidation assays with the 19 human UDP-glucuronosyltransferases (UGTs) of subfamilies UGT1A, UGT2A, and UGT2B revealed that UGT2B17 is the most active enzyme in testosterone glucuronidation. UGT2B17 does not glucuronidate epitestosterone, but inhibition studies revealed that it binds epitestosterone with affinity similar to that of testosterone. Epitestosterone glucuronidation is catalyzed mainly by UGT2B7, and the Km of this reaction is significantly lower than the Km of UGT2B17 for testosterone. Although UGT2B7 and UGT2B17 exhibited high, although converse, stereoselectivity in testosterone and epitestosterone glucuronidation, UGT2A1, an extrahepatic enzyme that is expressed mainly in the nasal epithelium, catalyzed the glucuronidation of both steroids at considerable rates and similar kinetics. The results shed new light on the substrate specificity and stereoselectivity of human UGTs.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
TL;DR: The copper-(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reactants.

2,882 citations

Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This review documents the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes in small-molecule, synthetic catalyst systems.
Abstract: Hydrogen bonding is responsible for the structure of much of the world around us. The unusual and complex properties of bulk water, the ability of proteins to fold into stable three-dimensional structures, the fidelity of DNA base pairing, and the binding of ligands to receptors are among the manifestations of this ubiquitous noncovalent interaction. In addition to its primacy as a structural determinant, hydrogen bonding plays a crucial functional role in catalysis. Hydrogen bonding to an electrophile serves to decrease the electron density of this species, activating it toward nucleophilic attack. This principle is employed frequently by Nature's catalysts, enzymes, for the acceleration of a wide range of chemical processes. Recently, organic chemists have begun to appreciate the tremendous potential offered by hydrogen bonding as a mechanism for electrophile activation in small-molecule, synthetic catalyst systems. In particular, chiral hydrogen-bond donors have emerged as a broadly applicable class of catalysts for enantioselective synthesis. This review documents these advances, emphasizing the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes.

1,580 citations