scispace - formally typeset
Search or ask a question
Author

Jaronie Mohd Jani

Bio: Jaronie Mohd Jani is an academic researcher from University of Kuala Lumpur. The author has contributed to research in topics: Shape-memory alloy & SMA*. The author has an hindex of 5, co-authored 10 publications receiving 2181 citations. Previous affiliations of Jaronie Mohd Jani include University of Engineering and Technology, Lahore & RMIT University.

Papers
More filters
Journal ArticleDOI
TL;DR: Shape memory alloys (SMAs) are a class of shape memory materials (SMMs) which have the ability to "memorise" or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations.

2,818 citations

Journal ArticleDOI
TL;DR: A brief review of the recent progress and development in optimising shape memory alloy linear actuators with different design methods, techniques and/or approaches is presented and discussed in this article, where the authors further emphasise that these limitations may be improved or even resolved with proper design approaches and techniques; thus, the functionality and the reliability of Shape Memory Alloy actuators could be realised and optimised.
Abstract: In numerous studies, it was emphasised that only a few of patented shape memory alloy applications are commercially successful due to material limitations combined with a lack of material and design knowledge and associated tools. This work further emphasises that these limitations may be improved or even resolved with proper design approaches and techniques; thus, the functionality and the reliability of shape memory alloy actuators could be realised and optimised. A brief review of the recent progress and development in optimising shape memory alloy linear actuator with different design methods, techniques and/or approaches are presented and discussed in this review.

84 citations

Journal ArticleDOI
TL;DR: The SMA attributes that make them ideally suited as actuators in automotive applications are described and to address their limitations, feasibilities and prospects.
Abstract: Shape memory alloy (SMA) actuators have drawn much attention and interest due to their unique and superior properties, and are expected to be equipped in many modern vehicles at competitive market prices. The key advantage is that SMA actuators do not require bulky and complicated mechanical design to function, where the active element (e.g. SMA wire or spring) can be deformed by applying minimal external force and will retain to their previous form when subjected to certain stimuli such as thermomechanical or magnetic changes. This paper describes the SMA attributes that make them ideally suited as actuators in automotive applications and to address their limitations, feasibilities and prospects.

61 citations

Journal ArticleDOI
TL;DR: In this paper, analytical and finite difference equation models were developed to predict the activation and deactivation durations and associated SMA thermomechanical behavior under variable environmental and design conditions, including latent heat effect, induced stress and material property variability.
Abstract: The demand for shape memory alloy (SMA) actuators in high-technology applications is increasing; however, there exist technical challenges to the commercial application of SMA actuator technologies, especially associated with actuation duration. Excessive activation duration results in actuator damage due to overheating while excessive deactivation duration is not practical for high-frequency applications. Analytical and finite difference equation models were developed in this work to predict the activation and deactivation durations and associated SMA thermomechanical behavior under variable environmental and design conditions. Relevant factors, including latent heat effect, induced stress and material property variability are accommodated. An existing constitutive model was integrated into the proposed models to generate custom SMA stress---strain curves. Strong agreement was achieved between the proposed numerical models and experimental results; confirming their applicability for predicting the behavior of SMA actuators with variable thermomechanical conditions.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the crossover and critical radius of a transient cylindrical system and showed that the cycle-average heat transfer rate can stabilize to a quasi-static value in response to transient heating.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Shape memory alloys (SMAs) are a class of shape memory materials (SMMs) which have the ability to "memorise" or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations.

2,818 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: A critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures, and improved materials, processing methods, and sensing play an important role in future research.
Abstract: Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research.

1,028 citations

Journal ArticleDOI
TL;DR: A detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications, including both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Abstract: This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

897 citations