scispace - formally typeset
Search or ask a question
Author

Jarrod D. Hadfield

Bio: Jarrod D. Hadfield is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Population & Heritability. The author has an hindex of 33, co-authored 61 publications receiving 10005 citations. Previous affiliations of Jarrod D. Hadfield include Imperial College London & University of Oxford.


Papers
More filters
Journal ArticleDOI
TL;DR: The R package MCMCglmm implements Markov chain Monte Carlo methods for generalized linear mixed models, which provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form.
Abstract: Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm implements such an algorithm for a range of model fitting problems. More than one response variable can be analyzed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simu- lation is done in C/ C++ using the CSparse library for sparse linear systems.

4,156 citations

Journal ArticleDOI
Daniel J. Benjamin1, James O. Berger2, Magnus Johannesson1, Magnus Johannesson3, Brian A. Nosek4, Brian A. Nosek5, Eric-Jan Wagenmakers6, Richard A. Berk7, Kenneth A. Bollen8, Björn Brembs9, Lawrence D. Brown7, Colin F. Camerer10, David Cesarini11, David Cesarini12, Christopher D. Chambers13, Merlise A. Clyde2, Thomas D. Cook14, Thomas D. Cook15, Paul De Boeck16, Zoltan Dienes17, Anna Dreber3, Kenny Easwaran18, Charles Efferson19, Ernst Fehr20, Fiona Fidler21, Andy P. Field17, Malcolm R. Forster22, Edward I. George7, Richard Gonzalez23, Steven N. Goodman24, Edwin J. Green25, Donald P. Green26, Anthony G. Greenwald27, Jarrod D. Hadfield28, Larry V. Hedges14, Leonhard Held20, Teck-Hua Ho29, Herbert Hoijtink30, Daniel J. Hruschka31, Kosuke Imai32, Guido W. Imbens24, John P. A. Ioannidis24, Minjeong Jeon33, James Holland Jones34, Michael Kirchler35, David Laibson36, John A. List37, Roderick J. A. Little23, Arthur Lupia23, Edouard Machery38, Scott E. Maxwell39, Michael A. McCarthy21, Don A. Moore40, Stephen L. Morgan41, Marcus R. Munafò42, Shinichi Nakagawa43, Brendan Nyhan44, Timothy H. Parker45, Luis R. Pericchi46, Marco Perugini47, Jeffrey N. Rouder48, Judith Rousseau49, Victoria Savalei50, Felix D. Schönbrodt51, Thomas Sellke52, Betsy Sinclair53, Dustin Tingley36, Trisha Van Zandt16, Simine Vazire54, Duncan J. Watts55, Christopher Winship36, Robert L. Wolpert2, Yu Xie32, Cristobal Young24, Jonathan Zinman44, Valen E. Johnson18, Valen E. Johnson1 
University of Southern California1, Duke University2, Stockholm School of Economics3, University of Virginia4, Center for Open Science5, University of Amsterdam6, University of Pennsylvania7, University of North Carolina at Chapel Hill8, University of Regensburg9, California Institute of Technology10, Research Institute of Industrial Economics11, New York University12, Cardiff University13, Northwestern University14, Mathematica Policy Research15, Ohio State University16, University of Sussex17, Texas A&M University18, Royal Holloway, University of London19, University of Zurich20, University of Melbourne21, University of Wisconsin-Madison22, University of Michigan23, Stanford University24, Rutgers University25, Columbia University26, University of Washington27, University of Edinburgh28, National University of Singapore29, Utrecht University30, Arizona State University31, Princeton University32, University of California, Los Angeles33, Imperial College London34, University of Innsbruck35, Harvard University36, University of Chicago37, University of Pittsburgh38, University of Notre Dame39, University of California, Berkeley40, Johns Hopkins University41, University of Bristol42, University of New South Wales43, Dartmouth College44, Whitman College45, University of Puerto Rico46, University of Milan47, University of California, Irvine48, Paris Dauphine University49, University of British Columbia50, Ludwig Maximilian University of Munich51, Purdue University52, Washington University in St. Louis53, University of California, Davis54, Microsoft55
TL;DR: The default P-value threshold for statistical significance is proposed to be changed from 0.05 to 0.005 for claims of new discoveries in order to reduce uncertainty in the number of discoveries.
Abstract: We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries.

1,586 citations

Posted Content
TL;DR: This article proposed to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005, which is the threshold used in this paper.
Abstract: We propose to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005.

1,415 citations

Journal ArticleDOI
TL;DR: This paper takes three recent publications that develop phylogenetic meta‐analysis, either implicitly or explicitly, and shows how they can be considered as quantitative genetic models and highlights some of the difficulties with the proposed solutions, and demonstrates that standard quantitative genetic theory and software offer solutions.
Abstract: Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

712 citations

Journal ArticleDOI
TL;DR: Alternative approaches to separating the relative contributions of these two sources to phenotypic covariances are considered, comparing experimental approaches such as cross‐fostering, traditional statistical techniques and more complex statistical models, specifically the ‘animal model’.
Abstract: Related individuals often have similar phenotypes, but this similarity may be due to the effects of shared environments as much as to the effects of shared genes. We consider here alternative approaches to separating the relative contributions of these two sources to phenotypic covariances, comparing experimental approaches such as cross-fostering, traditional statistical techniques and more complex statistical models, specifically the ‘animal model’. Using both simulation studies and empirical data from wild populations, we demonstrate the ability of the animal model to reduce bias due to shared environment effects such as maternal or brood effects, especially where pedigrees contain multiple generations and immigration rates are low. However, where common environment effects are strong, a combination of both cross-fostering and an animal model provides the best way to avoid bias. We illustrate ways of partitioning phenotypic variance into components of additive genetic, maternal genetic, maternal environment, common environment, permanent environment and temporal effects, but also show how substantial confounding between these different effects may occur. Whilst the flexibility of the mixed model approach is extremely useful for incorporating the spatial, temporal and social heterogeneity typical of natural populations, the advantages will inevitably be restricted by the quality of pedigree information and care needs to be taken in specifying models that are appropriate to the data.

365 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: In this article, the authors make a case for the importance of reporting variance explained (R2) as a relevant summarizing statistic of mixed-effects models, which is rare, even though R2 is routinely reported for linear models and also generalized linear models (GLM).
Abstract: Summary The use of both linear and generalized linear mixed-effects models (LMMs and GLMMs) has become popular not only in social and medical sciences, but also in biological sciences, especially in the field of ecology and evolution. Information criteria, such as Akaike Information Criterion (AIC), are usually presented as model comparison tools for mixed-effects models. The presentation of ‘variance explained’ (R2) as a relevant summarizing statistic of mixed-effects models, however, is rare, even though R2 is routinely reported for linear models (LMs) and also generalized linear models (GLMs). R2 has the extremely useful property of providing an absolute value for the goodness-of-fit of a model, which cannot be given by the information criteria. As a summary statistic that describes the amount of variance explained, R2 can also be a quantity of biological interest. One reason for the under-appreciation of R2 for mixed-effects models lies in the fact that R2 can be defined in a number of ways. Furthermore, most definitions of R2 for mixed-effects have theoretical problems (e.g. decreased or negative R2 values in larger models) and/or their use is hindered by practical difficulties (e.g. implementation). Here, we make a case for the importance of reporting R2 for mixed-effects models. We first provide the common definitions of R2 for LMs and GLMs and discuss the key problems associated with calculating R2 for mixed-effects models. We then recommend a general and simple method for calculating two types of R2 (marginal and conditional R2) for both LMMs and GLMMs, which are less susceptible to common problems. This method is illustrated by examples and can be widely employed by researchers in any fields of research, regardless of software packages used for fitting mixed-effects models. The proposed method has the potential to facilitate the presentation of R2 for a wide range of circumstances.

7,749 citations

Journal ArticleDOI
TL;DR: It is argued that researchers using LMEMs for confirmatory hypothesis testing should minimally adhere to the standards that have been in place for many decades, and it is shown thatLMEMs generalize best when they include the maximal random effects structure justified by the design.

6,878 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here the authors focus on count responses and its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean is unique.
Abstract: Count data can be analyzed using generalized linear mixed models when observations are correlated in ways that require random effects However, count data are often zero-inflated, containing more zeros than would be expected from the typical error distributions We present a new package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here we focus on count responses glmmTMB is faster than glmmADMB, MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling One unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean Overall, its most appealing features for new users may be the combination of speed, flexibility, and its interface’s similarity to lme4

4,497 citations