scispace - formally typeset
Search or ask a question
Author

Jasmin Joshi

Bio: Jasmin Joshi is an academic researcher from University of Potsdam. The author has contributed to research in topics: Biodiversity & Ecosystem. The author has an hindex of 34, co-authored 86 publications receiving 7418 citations. Previous affiliations of Jasmin Joshi include Free University of Berlin & Hochschule für Technik Rapperswil.


Papers
More filters
Journal ArticleDOI
05 Nov 1999-Science
TL;DR: Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.
Abstract: At eight European field sites, the impact of loss of plant diversity on primary productivity was simulated by synthesizing grassland communities with different numbers of plant species. Results differed in detail at each location, but there was an overall log-linear reduction of average aboveground biomass with loss of species. For a given number of species, communities with fewer functional groups were less productive. These diversity effects occurred along with differences associated with species composition and geographic location. Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.

1,870 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments, showing that communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space.
Abstract: We present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments. We report results of the analysis of 11 variables addressing several aspects of key ecosystem processes like biomass production, resource use (space, light, and nitrogen), and decomposition, measured across three years in plots of varying plant species richness at eight different European grassland field sites. Differences among sites explained substantial and significant amounts of the variation of most of the ecosystem processes examined. However, against this background of geographic variation, all the aspects of plant diversity and composition we examined (i.e., both numbers and types of species and functional groups) produced significant, mostly positive impacts on ecosystem processes. Analyses using the additive partitioning method revealed that complementarity effects (greater net yields than predicted from monocultures due to resource partitioning, positive interactions, etc.) were stronger and more consistent than selection effects (the covariance between monoculture yield and change in yield in mixtures) caused by dominance of species with particular traits. In general, communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space. Diversity had significant effects through both increased vegetation cover and greater nitrogen retention by plants when this resource was more abundant through N2 fixation by legumes. However, additional positive diversity effects remained even after controlling for differences in vegetation cover and for the presence of legumes in communities. Diversity effects were stronger on above- than belowground processes. In particular, clear diversity effects on decomposition were only observed at one of the eight sites. The ecosystem effects of plant diversity also varied between sites and years. In general, diversity effects were lowest in the first year and stronger later in the experiment, indicating that they were not transitional due to community establishment. These analyses of our complete ecosystem process data set largely reinforce our previous results, and those from comparable biodiversity experiments, and extend the generality of diversity–ecosystem functioning relationships to multiple sites, years, and processes.

487 citations

Journal ArticleDOI
01 Aug 2010-Ecology
TL;DR: The results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.
Abstract: Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk-spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.

443 citations

Journal ArticleDOI
TL;DR: The overall performance of the three test species, Trifolium pratense, Dactylis glomerata, Plantago lanceolata, was generally highest for plants replanted at their home site and declined with increasing transplanting distance.
Abstract: Geographic variation can lead to the evolution of different local varieties, even in widespread forage plants. We investigated the performance of common forage plants in relation to their genetic diversity and local adaptation at a continental scale using reciprocal transplants at eight field sites across Europe over a 2-year period. The overall performance of the three test species, Trifolium pratense, Dactylis glomerata, Plantago lanceolata, was generally highest for plants replanted at their home site and declined with increasing transplanting distance. The three species differed in the fitness components responsible for the increased overall performance and selection advantage at home sites. In addition to the effects of local adaptation, the majority of measured traits in all three species also showed ecotypic variation. However, no single ecotype of any species was able to outperform the locally adapted strains and do best at all sites, highlighting the importance of maintaining these plant genetic resources.

442 citations

Journal ArticleDOI
TL;DR: The absence of specialist herbivores in invasive populations resulted in the evolution of lower protection against specialists and increased growth and reproduction, but also allowed a shift towards higher protection against generalist herbivore.
Abstract: The success of invasive plants has been attributed to their escape from natural enemies and subsequent evolutionary change in allocation from defence to growth and reproduction. In common garden experiments with Senecio jacobaea, a noxious invasive weed almost worldwide, the invasive populations from North America, Australia, and New Zealand did indeed allocate more resources to vegetative and reproductive biomass. However, invasive plants did not show a complete change in allocation from defence to growth and reproduction. Protection against generalist herbivores increased in invasive populations and pyrrolizidine alkaloids, their main anti-herbivore compounds, did not decline in invasive populations but were higher overall compared with native populations. In contrast, invasive plants lost additional protection against specialist herbivores adapted to pyrrolizidine alkaloids. Hence, the absence of specialist herbivores in invasive populations resulted in the evolution of lower protection against specialists and increased growth and reproduction, but also allowed a shift towards higher protection against generalist herbivores.

418 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations