scispace - formally typeset
Search or ask a question
Author

Jason A. Cardelli

Other affiliations: Villanova University
Bio: Jason A. Cardelli is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Interstellar medium & Extinction (astronomy). The author has an hindex of 24, co-authored 49 publications receiving 12753 citations. Previous affiliations of Jason A. Cardelli include Villanova University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Abstract: The parameterized extinction data of Fitzpatrick and Massa (1986, 1988) for the ultraviolet and various sources for the optical and near-infrared are used to derive a meaningful average extinction law over the 3.5 micron to 0.125 wavelength range which is applicable to both diffuse and dense regions of the interstellar medium. The law depends on only one parameter R(V) = A(V)/E(B-V). An analytic formula is given for the mean extinction law which can be used to calculate color excesses or to deredden observations. The validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature and very efficient.

11,704 citations

Journal ArticleDOI
TL;DR: In this article, column densities based on Goddard High Resolution Spectrograph 3.5 km/s resolution measurements from the literature for eight individual absorbing regions toward five lines of sight are used.
Abstract: We explore the incorporation of the cosmically abundant species O, C, N, Mg, Si, Fe, and S into interstellar dust. Column densities based on Goddard High Resolution Spectrograph 3.5 km/s resolution measurements from the literature for eight individual absorbing regions toward five lines of sight are used. Corrections are applied as needed in order to account for recent improvements in oscillator strengths. In order to acquire the most accurate column densities, and check on the accuracy of the oscillator strengths, we compare column densities based on the very strong Lorentzian damped lines of C II, O I, N I, and Mg II with results for the weak lines of these species, and confirm the previously determined f-values for O I lambda 1335, C II lambda 2325, and N I lambda lambda 1159, 1160. New empirical f-values of 1.25 x 10(exp -3) and 6.25 x 10(exp -4), respectively, are derived for the Mg II weak doublet at 1239 and 1240 A. Assuming a cosmic reference abundance based on solar and B star values, we derive depletions and dust-phase abundances which suggest that more than 70% of the available Mg and Fe is incorporated into dust-grain cores, whereas only 35% of the silicon is. This implies that oxides are important constituents of the grain core population. Mg and Fe atoms are mantled onto grain cores in a ratio of 1.8 to 1, whereas approximately 4.0 Si atoms are in the mantle per Fe atom. Since Si is not expected to accrete onto silicate or graphite grains, other grain cores, perhaps oxides and/or metallic Fe, may provide mantling sites for this species. The abundances of Fe and Mg in mantles would imply that graphite grains must have a substantial coating unless oxides provide significant mantling sites for these species. The abundance of O and N in the dust phase as implied by the solar reference abundance values are difficult to reconcile with the fact that these elements are not expected to participate in mantle formation, and the 3.1 micrometer H2O ice feature is not seen in absorption toward stars similar to those studied. The B star reference abundances for O and N, however, imply that no mantling of these species has occurred. The dust-phase abundance for C implied by solar reference abundances agrees with predictions for the number of graphite grains needed to produce the 2175 A bump. B star reference abundances, however, suggest that the abundance of C in the dust phase is not always sufficient to produce the bump.

213 citations

Journal ArticleDOI
TL;DR: Using the Hubble Space Telescope Goddard High Resolution Spectrograph (GHRS), the authors obtained high S/N echelle observations of the weak interstellar N I λλ1160, 1161 absorption doublet toward the stars γ Cas, λ Ori, ι Ori, etc.
Abstract: Using the Hubble Space Telescope Goddard High Resolution Spectrograph (GHRS), we have obtained high S/N echelle observations of the weak interstellar N I λλ1160, 1161 absorption doublet toward the stars γ Cas, λ Ori, ι Ori, κ Ori, δ Sco, and κ Sco. In combination with a previous GHRS measurement of N I toward ζ Oph, these new observations yield a mean interstellar gas-phase nitrogen abundance (per 106 H atoms) of 106 N/H = 75 ± 4 (±1 σ). There are no statistically significant variations in the measured N abundances from sight line to sight line and no evidence of density-dependent nitrogen depletion from the gas phase. Since N is not expected to be depleted much into dust grains in these diffuse sight lines, its gas-phase abundance should reflect the total interstellar abundance. Consequently, the GHRS observations imply that the abundance of interstellar nitrogen (gas plus grains) in the local Milky Way is about 80% of the solar system value of 106 N/H = 93 ± 16. Although this interstellar abundance deficit is somewhat less than that recently found for oxygen and krypton with GHRS, the solar N abundance and the N I oscillator strengths are too uncertain to rule out definitively either a solar ISM N abundance or a solar ISM N abundance similar to that of O and Kr.

184 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the correlation of optical-near-infrared photometry for a sample of stars with well-determined ultraviolet extinction and found that the value of total-to-selective extinction correlates well with the level of linear UV background extinction found from the UV curve parameterization of Fitzpatrick and Massa.
Abstract: The correlation of optical-near-infrared photometry for a sample of stars with well-determined ultraviolet extinction is examined. A good correlation is found; in particular, it is found that the value of total-to-selective extinction correlates well with the level of linear UV background extinction found from the UV curve parameterization of Fitzpatrick and Massa. An analytic expression is given for an improved estimate for the UV extinction law that can be obtained from optically determined values of R. For R values outside the range R = 3.1 -3.5, use of the analytic expressions given here will result in a more accurate representation of the applicable UV extinction than using the standard techniques of assuming the average curve or 'ironing out' the bump.

172 citations

Journal ArticleDOI
TL;DR: In this article, the chemical transitions affecting C2 and CN in cloud envelopes were analyzed and the predicted column densities for C 2 and CN agree with the observed values to better than 50%, and in most instances 20%.
Abstract: Observations were made of absorption from CH, C2, and CN toward moderately reddened stars in Sco, OB2, Ceo OB3, and Taurus/Auriga. For these directions, most of the reddening is associated with a single cloud complex, for example, the rho Ophiuchus molecular cloud, and as a result, the observations probe moderately dense material. When combined with avaliable data for nearby directions, the survey provides the basis for a comprehensive analysis of the chemistry for these species. The chemical transitions affecting C2 and CN in cloud envelopes were analyzed. The depth into a cloud at which a transition takes place was characterized by tau(sub uv), the grain optical depth at 1000 A. One transition at tau(sub uv) approx. = 2, which arises from, the conversion of C(+) into CO, affects the chemistries for both molecules because of the key role this ion plays. A second one involving production terms in the CN chemistry occurs at tau(sub uv) of approx. = 3; neutral reactions which C2 and CH is more important at larger values for tau(sub uv). The transition from photodissociation to chemical destruction takes place at tau(sub uv) approx. = 4.5 for C2 and CN. The observational data for stars in Sco OB2, Cep OB3, and Taurus/Auriga were studied with chemical rate equations containing the most important production and destruction mechanisms. Because the sample of stars in Sco OB2 includes sight lines with A(sub v) ranging from 1-4 mag, sight lines dominated by photochemistry could be analyzed separately from those controlled by gas-phase destruction. The analysis yielded values for two poorly known rate constants for reactions involved in the production of CN; the reactions are C2 + N yields CN + C and C(+) + NH yields all products. The other directions were analyzed with the inferred values. The predicted column densities for C2 and CN agree with the observed values to better than 50%, and in most instances 20%. When combining the estimates for density and temperature derived from chemical modeling and molecular excitation for a specific cloud, such as the rho Ophiuchus molecular cloud, the portion of the cloud envelope probed by C2 and CN absorption was found to be in pressure equilibrium.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Abstract: We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u – g, g – r, r – i, and i – z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm our earlier "blue tip" reddening measurements, finding reddening coefficients different by –3%, 1%, 1%, and 2% in u – g, g – r, r – i, and i – z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an RV = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B – V) to extinction in 88 bandpasses for four values of RV , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.

6,643 citations