scispace - formally typeset
Search or ask a question
Author

Jason A. Seabold

Bio: Jason A. Seabold is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Photocurrent & Water splitting. The author has an hindex of 11, co-authored 12 publications receiving 2522 citations. Previous affiliations of Jason A. Seabold include University of Southern California & Purdue University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of anodically formed semiconducting TiO2 nanotubes as well as nanowire arrays as electrodes for oxidative photoelectrochemistry were discussed.
Abstract: In this article, we present recent advances that we have achieved toward improving the properties of anodically formed semiconducting TiO2 nanotubes as well as nanowire arrays as electrodes for oxidative photoelectrochemistry. The morphology, crystallinity, composition, and illumination geometry of nanotube or nanowire arrays are critical factors in their performance as photoelectrodes. We discuss the key aspects relating to each factor and the advances achieved in improving each. With respect to the more fully investigated nanotube arrays, the ability to control the morphological parameters such as pore size, tube length, and wall thickness of the nanotube architecture has enabled high performance in applications such as water photoelectrolysis, photocatalysis, dye-sensitized solar cells, and heterojunction TiO2−polymer hybrid solar cells. We begin by reviewing the photoelectrochemical performance of state-of-the-art nanotube arrays fabricated on planar substrates. We then present more recent results rel...

765 citations

Journal ArticleDOI
TL;DR: The BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date, and shows an outstanding performance in the low bias region.
Abstract: BiVO(4) films were prepared by a simple electrodeposition and annealing procedure and studied as oxygen evolving photoanodes for application in a water splitting photoelectrochemical cell. The resulting BiVO(4) electrodes maintained considerable photocurrent for photo-oxidation of sulfite, but generated significantly reduced photocurrent for photo-oxidation of water to oxygen, also decaying over time, suggesting that the photoelectrochemical performance of BiVO(4) for water oxidation is mainly limited by its poor catalytic ablity to oxidize water. In order to improve the water oxidation kinetics of the BiVO(4) electrode, a layer of FeOOH was placed on the BiVO(4) surface as an oxygen evolution catalyst using a new photodeposition route. The resulting BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date. In particular, the BiVO(4)/FeOOH photoanode showed an outstanding performance in the low bias region (i.e., E < 0.8 V vs RHE), which is critical in determining the overall operating current density when assembling a complete p-n photoelectrochemical diode cell. The photocurrent-to-O(2) conversion efficiency of the BiVO(4)/FeOOH photoanode is ca. 96%, confirming that the photogenerated holes in the BiVO(4)/FeOOH photoanode are indeed excusively used for O(2) evolution.

721 citations

Journal ArticleDOI
TL;DR: In this article, the effect of Co−Pi oxygen evolution catalyst (OEC) on the selectivity of photo-oxidation reactions and photostabilities of WO3 photoanodes was investigated.
Abstract: A bare WO3 electrode and a WO3 electrode coupled with a layer of Co−Pi oxygen evolution catalyst (OEC) were prepared to investigate the effect of Co−Pi OEC on the selectivity of photo-oxidation reactions and photostabilities of WO3 photoanodes. WO3 photoanodes have been reported to produce peroxo species as well as O2 during photo-oxidation reactions, and the accumulation of peroxo species on the surface is known to cause a gradual loss of photoactivity of WO3. The photocurrent to O2 conversion efficiencies of the WO3 and WO3/Co−Pi OEC electrodes were obtained by simultaneously measuring the photocurrent and O2 gas generated during illumination at 0.8 V vs Ag/AgCl. The result shows that the presence of OEC increases the photocurrent to O2 conversion efficiency from approximately 61% to approximately 100%. The complete suppression of peroxo formation provided the WO3/Co−Pi OEC photoelectrode with long-term photostability. The photocurrent−potential characteristics show that the presence of OEC effectively ...

525 citations

Journal ArticleDOI
TL;DR: In this article, a heterojunction CdTe/TiO2 photoelectrode was prepared by electrochemically filling the tubes and tube-to-tube voids of a TiO2 nanotube array with cdTe.
Abstract: A heterojunction CdTe/TiO2 photoelectrode was prepared by electrochemically filling the tubes and tube-to-tube voids of a TiO2 nanotube array with CdTe. The TiO2 nanotube arrays used in this study were prepared by anodizing titanium films, which resulted in closely packed n-type TiO2 tubes with an average inner pore diameter of 50 nm, wall thickness of approximately 13 nm, and length of 250−300 nm. CdTe was cathodically deposited using TiO2 nanotubes as the working electrode at E = −0.4 V vs Ag/AgCl at 85 °C (3H+ + Cd2+ + HTeO2+ + 6e− → CdTe + 2H2O). The resulting electrodes contained three-dimensionally organized CdTe/TiO2 junction structures with significantly enhanced junction areas. Formation of the CdTe/TiO2 junction improved the photocurrent generation and photostability of the CdTe layer when compared with a two-dimensional CdTe layer deposited directly on a conducting substrate (i.e., fluorine-doped tin oxide). A more intimate and conformal CdTe/TiO2 junction was formed via a new deposition techni...

216 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed understanding of doping level, electron diffusion length and coefficient, as well as light capture and charge separation efficiencies in nanoporous Mo-doped BiVO4 (Mo:BiVO4) photoanodes is obtained using photoelectrochemical techniques.
Abstract: A detailed understanding of doping level, electron diffusion length and coefficient, as well as light capture and charge separation efficiencies in nanoporous Mo-doped BiVO4 (Mo:BiVO4) photoanodes is obtained using photoelectrochemical techniques. Efficient water oxidation is achieved by doping with 1.8% Mo, resulting in a several-fold enhancement in photooxidation rate versus non-doped BiVO4. Two techniques are used to study the effect of Mo doping on the electron transport: (1) an analysis of the front/back illumination ratio of incident photon-to-current efficiency and (2) intensity modulated photocurrent spectroscopy. These techniques show that Mo doping improves the diffusion coefficient four-fold and increases the diffusion length to ca. 300 nm (from 10 nm for the non-doped material), which is also the empirically-determined optimal Mo:BiVO4 film thickness for photoelectrolysis. These films are found to have a 90% charge separation efficiency and an 80% absorbed photon-to-current efficiency, excellent values for metal oxide photoabsorbers. Among the many oxygen evolution catalysts studied, surface modification with iron oxyhydroxide (FeOOH), a simple earth abundant catalyst, dramatically enhances the water oxidation performance of Mo:BiVO4 to an integrated IPCE of 2.41 mA cm(-2) and a photocurrent density of 2.77 mA cm(-2) in neutral phosphate at 1.23 V vs. RHE.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Abstract: Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2

8,037 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, has been summarized.
Abstract: TiO 2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO 2 photocatalysis. In this review, recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO 2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO 2 photocatalysis, and describe structurally controlled TiO 2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO 2 surfaces for the fabrication of wettability patterns and for printing are discussed.

2,733 citations

Journal ArticleDOI
11 Jan 2017
TL;DR: In this article, the authors investigate progress towards photo-electrocatalytic water-splitting systems, with special emphasis on how they might be incorporated into photoelectrocaralyst systems.
Abstract: Sunlight is by far the most plentiful renewable energy resource, providing Earth with enough power to meet all of humanity's needs several hundred times over. However, it is both diffuse and intermittent, which presents problems regarding how best to harvest this energy and store it for times when the sun is not shining. Devices that use sunlight to split water into hydrogen and oxygen could be one solution to these problems, because hydrogen is an excellent fuel. However, if such devices are to become widely adopted, they must be cheap to produce and operate. Therefore, the development of electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical. In this Review, we investigate progress towards such electrocatalysts, with special emphasis on how they might be incorporated into photoelectrocatalytic water-splitting systems and the challenges that remain in developing these devices. Splitting water is an attractive means by which energy — either electrical and/or light — is stored and consumed on demand. Active and efficient catalysts for anodic and cathodic reactions often require precious metals. This Review covers base-metal catalysts that can afford high performance in a more sustainable and available manner.

2,369 citations

Journal ArticleDOI
28 Feb 2014-Science
TL;DR: It is demonstrated that a nanoporous morphology effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE).
Abstract: Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.

2,361 citations

Journal ArticleDOI
TL;DR: The research shows that loading suitable dual cocatalysts on semiconductors can significantly increase the photocatalytic activities of hydrogen and oxygen evolution reactions, and even make the overall water splitting reaction possible.
Abstract: Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting with a PEC cell, and electrolysis of water with photovoltaic cells coupled to electrocatalysts. Though many materials are capable of photocatalytically producing hydrogen and/or oxygen, the overall energy conversion efficiency is still low and far from practical application. This is mainly due to the fact that the three crucial steps for the water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic reduction and oxidation reactions, are not efficient enough or simultaneously. Water splitting is a thermodynamically uphill reaction, requiring transfer of multiple electrons, making it one of the most challenging reactions in chemistry. This Account describes the important roles of cocatalysts in photocatalytic and PEC water splitting reactions. For semiconductor-based photocatalytic and PEC systems, we show that loading proper cocatalysts, especially dual cocatalysts for reduction and oxidation, on semiconductors (as light harvesters) can significantly enhance the activities of photocatalytic and PEC water splitting reactions. Loading oxidation and/or reduction cocatalysts on semiconductors can facilitate oxidation and reduction reactions by providing the active sites/reaction sites while suppressing the charge recombination and reverse reactions. In a PEC water splitting system, the water oxidation and reduction reactions occur at opposite electrodes, so cocatalysts loaded on the electrode materials mainly act as active sites/reaction sites spatially separated as natural photosynthesis does. In both cases, the nature of the loaded cocatalysts and their interaction with the semiconductor through the interface/junction are important. The cocatalyst can provide trapping sites for the photogenerated charges and promote the charge separation, thus enhancing the quantum efficiency; the cocatalysts could improve the photostability of the catalysts by timely consuming of the photogenerated charges, particularly the holes; most importantly, the cocatalysts catalyze the reactions by lowering the activation energy. Our research shows that loading suitable dual cocatalysts on semiconductors can significantly increase the photocatalytic activities of hydrogen and oxygen evolution reactions, and even make the overall water splitting reaction possible. All of these findings suggest that dual cocatalysts are necessary for developing highly efficient photocatalysts for water splitting reactions.

2,236 citations