scispace - formally typeset
Search or ask a question
Author

Jason Boyer

Bio: Jason Boyer is an academic researcher from Genomics Institute of the Novartis Research Foundation. The author has contributed to research in topics: Gene Annotation. The author has an hindex of 1, co-authored 1 publications receiving 1288 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: BioGPS http://biogps.gnf.org is introduced, a centralized gene portal for aggregating distributed gene annotation resources, and embraces the principle of community intelligence, enabling any user to easily and directly contribute to the BioGPS platform.
Abstract: Online gene annotation resources are indispensable for analysis of genomics data. However, the landscape of these online resources is highly fragmented, and scientists often visit dozens of these sites for each gene in a candidate gene list. Here, we introduce BioGPS http://biogps.gnf.org, a centralized gene portal for aggregating distributed gene annotation resources. Moreover, BioGPS embraces the principle of community intelligence, enabling any user to easily and directly contribute to the BioGPS platform.

1,364 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING), which provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information.
Abstract: An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein-protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.

3,239 citations

Journal ArticleDOI
TL;DR: GeneCards, the human gene compendium, enables researchers to effectively navigate and inter‐relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways and provides a stronger foundation for the GeneCards suite of companion databases and analysis tools.
Abstract: GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.

2,015 citations

01 Aug 2010
TL;DR: It is reported that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells.
Abstract: Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.

1,771 citations

Journal ArticleDOI
TL;DR: A new web site with improved tools for pathway browsing and data analysis is developed, and orthology-based inferences of pathways in non-human species are made, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species.
Abstract: Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.

1,460 citations