scispace - formally typeset
Search or ask a question
Author

Jason Harris

Bio: Jason Harris is an academic researcher from Illumina. The author has contributed to research in topics: Large Magellanic Cloud & Star formation. The author has an hindex of 21, co-authored 39 publications receiving 2804 citations. Previous affiliations of Jason Harris include University of California, Santa Cruz.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the Large Magellanic Cloud (LMC) were surveyed using the Spitzer Space Telescope.
Abstract: We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies of dust processes in the ISM. SAGE's point source sensitivity enables a complete census of newly formed stars with masses >3 solar masses that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by three months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are non-proprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data with a special focus on the N79 and N83 region. The SAGE epoch 1 point source catalog has ~4 million sources. The point source counts are highest for the IRAC 3.6 microns band and decrease dramatically towards longer wavelengths consistent with the fact that stars dominate the point source catalogs and that the dusty objects, e.g. young stellar objects and dusty evolved stars that detected at the longer wavelengths, are rare in comparison. We outline a strategy for identifying foreground MW stars, that may comprise as much as 18% of the source list, and background galaxies, that may comprise ~12% of the source list.

717 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a catalog of U, B, V, and I stellar photometry of the central 64 sq. deg. area of the Large Magellanic Cloud and fit stellar atmosphere models to the optical data to check the consistency of the photometry for individual stars across the passbands.
Abstract: We present our catalog of U, B, V, and I stellar photometry of the central 64 sq. deg. area of the Large Magellanic Cloud. Internal and external astrometric and photometric tests using existing optical photometry (U, B, and V from Massey's bright star catalog and I from the near-infrared sky survey DENIS) are used to confirm our observational uncertainty estimates. We fit stellar atmosphere models to the optical data to check the consistency of the photometry for individual stars across the passbands and to estimate the line-of-sight extinction. Finally, we use the estimated line-of-sight extinctions to produce an extinction map across the Large Magellanic Cloud, confirm the variation of extinction as a function of stellar population, and produce a simple geometrical model for the extinction as a function of stellar population.

396 citations

Journal ArticleDOI
TL;DR: In this paper, the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally stripped, low metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust of evolved stars, and how much dust is consumed in star formation.
Abstract: The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 sq. deg.) including the Body, Wing, and Tail in 7 bands from 3.6 to 160 micron using the IRAC and MIPS instruments on the Spitzer Space Telescope. The data were reduced, mosaicked, and the point sources measured using customized routines specific for large surveys. We have made the resulting mosaics and point source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 micron/24 micron ratio is somewhat lower and the 70 micron/160 micron ratio is somewhat higher than the average. The global infrared spectral energy distribution shows that the SMC has ~3X lower aromatic emission/PAH (polycyclic aromatic hydrocarbon) abundances compared to most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average spectral energy distribution (SED) of HII/star formation regions is compared to the equivalent Large Magellanic Cloud average HII/star formation region SED. These preliminary results are expanded in detail in companion papers.

229 citations

Patent
21 Oct 2011
TL;DR: In this article, a fluidic device holder is configured to orient an inertial device against a set of reference surfaces along an XY-plane, and an alignment assembly has an actuator and a movable locator arm that is operatively coupled to the actuator.
Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a spectroscopic survey of 2046 red giant stars, distributed over the central 4x2 kpc of the Small Magellanic Cloud (SMC), is presented.
Abstract: We present a spectroscopic survey of 2046 red giant stars, distributed over the central 4x2 kpc of the Small Magellanic Cloud (SMC). After fitting and removing a small velocity gradient across the SMC (7.9 km/s/deg oriented at 10 deg E of N), we measure an rms velocity scatter of 27.5+-0.5 km/s. The line of sight velocity distribution is well-characterized by a Gaussian and the velocity dispersion profile is nearly constant as a function of radius. We find no kinematic evidence of tidal disturbances. Without a high-precision measurement of the SMC's proper motion, it is not possible to constrain the SMC's true rotation speed from our measured radial-velocity gradient. However, even with conservative assumptions, we find that v < sigma and hence that the SMC is primarily supported by its velocity dispersion. We find that the shape of the SMC, as measured from the analysis of the spatial distribution of its red giant stars, is consistent with the degree of rotational flattening expected for the range of allowed v/sigma values. As such, the properties of the SMC are consistent with similar low luminosity spheroidal systems. We conclude that the SMC is primarily a low luminosity spheroid whose irregular visual appearance is dominated by recent star formation. A simple virial analysis using the measured kinematics implies an enclosed mass within 1.6 kpc of between 1.4 and 1.9x10^9 Mo, and a less well constrained mass within 3 kpc of between 2.7 and 5.1x10^9 Mo.

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation are presented, including monolithic collapse in isolated cores, competitive accretion in a protocluster environment, stellar collisions and mergers in very dense systems.
Abstract: Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: ▪ monolithic collapse in isolated cores ▪ competitive accretion in a protocluster environment ▪ stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass ...

1,332 citations

Journal ArticleDOI
TL;DR: The Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project as discussed by the authors provides a set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art 1D stellar evolution package.
Abstract: This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 \leq \rm \log(Age)\;[yr] \leq 10.3$), masses ($0.1 \leq M/M_{\odot} \leq 300$), and metallicities ($-2.0 \leq \rm [Z/H] \leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 \leq \rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at this http URL

1,301 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent progress in finding the progenitors of core-collapse supernovae and the physical mechanism of the explosion. But they did not discuss the physical mechanisms of the supernova explosion.
Abstract: Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 ± 1 M⊙ from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ∼20 M⊙ may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type II SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and t...

1,198 citations

Journal ArticleDOI
TL;DR: A review of the results of quantitative studies in nearby dwarf galaxies can be found in this paper, where the combination of spectroscopy and imaging and what they have taught us about dwarf galaxy formation and evolution is the aim of this work.
Abstract: Within the Local Universe galaxies can be studied in great detail star by star, and here we review the results of quantitative studies in nearby dwarf galaxies. The color-magnitude diagram synthesis method is well established as the most accurate way to determine star-formation histories of galaxies back to the earliest times. This approach received a large boost from the exceptional data sets that wide-field CCD imagers on the ground and the Hubble Space Telescope could provide. Spectroscopic studies using large ground-based telescopes such as VLT, Magellan, Keck, and HET have allowed the determination of abundances and kinematics for significant samples of stars in nearby dwarf galaxies. These studies have shown how the properties of stellar populations can vary spatially and temporally. This leads to important constraints to theories of galaxy formation and evolution. The combination of spectroscopy and imaging and what they have taught us about dwarf galaxy formation and evolution is the aim of this r...

1,165 citations

Journal ArticleDOI
TL;DR: The Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project as mentioned in this paper provides a set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art 1D stellar evolution package.
Abstract: This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 \leq \rm \log(Age)\;[yr] \leq 10.3$), masses ($0.1 \leq M/M_{\odot} \leq 300$), and metallicities ($-2.0 \leq \rm [Z/H] \leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 \leq \rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at this http URL

1,127 citations