scispace - formally typeset
Search or ask a question
Author

Jason Jonkman

Bio: Jason Jonkman is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Wind power & Turbine. The author has an hindex of 44, co-authored 196 publications receiving 11767 citations. Previous affiliations of Jason Jonkman include Office of Scientific and Technical Information.


Papers
More filters
ReportDOI
01 Feb 2009
TL;DR: In this article, a three-bladed, upwind, variable speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology is described.
Abstract: This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

4,194 citations

ReportDOI
01 Dec 2007
TL;DR: In this paper, the authors describe the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines, which is used to simulate the dynamic response of wind turbines.
Abstract: This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

677 citations

ReportDOI
01 May 2010
TL;DR: In this article, the authors present the specifications of an offshore floating wind turbine, which are needed by the participants for building aero-hydro-servo-elastic models during the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3).
Abstract: Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

515 citations

ReportDOI
01 Dec 2010
TL;DR: The final report of the IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3) as discussed by the authors.
Abstract: This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

325 citations


Cited by
More filters
ReportDOI
01 Feb 2009
TL;DR: In this article, a three-bladed, upwind, variable speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology is described.
Abstract: This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

4,194 citations

Journal ArticleDOI
18 May 2015
TL;DR: The most successful generator-converter configurations are addressed along with few promising topologies available in the literature from the market based survey, and the past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory.
Abstract: This paper presents a comprehensive study on the state-of-the-art and emerging wind energy technologies from the electrical engineering perspective. In an attempt to decrease cost of energy, increase the wind energy conversion efficiency, reliability, power density, and comply with the stringent grid codes, the electric generators and power electronic converters have emerged in a rigorous manner. From the market based survey, the most successful generator-converter configurations are addressed along with few promising topologies available in the literature. The back-to-back connected converters, passive generator-side converters, converters for multiphase generators, and converters without intermediate dc-link are investigated for high-power wind energy conversion systems (WECS), and presented in low and medium voltage category. The onshore and offshore wind farm configurations are analyzed with respect to the series/parallel connection of wind turbine ac/dc output terminals, and high voltage ac/dc transmission. The fault-ride through compliance methods used in the induction and synchronous generator based WECS are also discussed. The past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory. The important survey results, and technical merits and demerits of various WECS electrical systems are summarized by tables. The list of current and future wind turbines are also provided along with technical details.

694 citations

ReportDOI
01 Dec 2007
TL;DR: In this paper, the authors describe the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines, which is used to simulate the dynamic response of wind turbines.
Abstract: This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

677 citations