scispace - formally typeset
Search or ask a question
Author

Jason Monty

Bio: Jason Monty is an academic researcher from University of Melbourne. The author has contributed to research in topics: Turbulence & Boundary layer. The author has an hindex of 34, co-authored 173 publications receiving 4705 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyse recent experimental data in the Reynolds number range of nominally 2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface layer, and show that the data support the existence of a universal logarithmic region.
Abstract: Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally 2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall. © 2013 Cambridge University Press.

618 citations

Journal ArticleDOI
TL;DR: In this article, the structure of fully developed turbulent pipe and channel flow has been studied using custom-made arrays of hot-wire probes, revealing long meandering structures of length up to 25 pipe radii or channel half-heights.
Abstract: In recent years there has been significant progress made towards understanding the large-scale structure of wall-bounded shear flows. Most of this work has been conducted with turbulent boundary layers, leaving scope for further work in pipes and channels. In this article the structure of fully developed turbulent pipe and channel flow has been studied using custom-made arrays of hot-wire probes. Results reveal long meandering structures of length up to 25 pipe radii or channel half-heights. These appear to be qualitatively similar to those reported in the log region of a turbulent boundary layer. However, for the channel case, large-scale coherence persists further from the wall than in boundary layers. This is expected since these large-scale features are a property of the logarithmic region of the mean velocity profile in boundary layers and it is well-known that the mean velocity in a channel remains very close to the log law much further from the wall. Further comparison of the three turbulent flows shows that the characteristic structure width in the logarithmic region of a boundary layer is at least 1.6 times smaller than that in a pipe or channel.

364 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the extent or existence of similarities between fully developed turbulent pipes and channels, and in zero-pressure-gradient turbulent boundary layers, through streamwise velocity measurements in these three flows.
Abstract: The extent or existence of similarities between fully developed turbulent pipes and channels, and in zero-pressure-gradient turbulent boundary layers has come into question in recent years. This is in contrast to the traditionally accepted view that, upon appropriate normalization, all three flows can be regarded as the same in the near-wall region. In this paper, the authors aim to provide clarification of this issue through streamwise velocity measurements in these three flows with carefully matched Reynolds number and measurement resolution. Results show that mean statistics in the near-wall region collapse well. However, the premultiplied energy spectra of streamwise velocity fluctuations show marked structural differences that cannot be explained by scaling arguments. It is concluded that, while similarities exist at these Reynolds numbers, one should exercise caution when drawing comparisons between the three shear flows, even near the wall.

350 citations

Journal ArticleDOI
TL;DR: This review summarizes the hypothesis that the dominant energy-containing motions in wall turbulence are due to large eddies attached to the wall and the modeling attempts made thereafter, with a focus on the validity of the model's assumptions and its limitations.
Abstract: Modeling wall turbulence remains a major challenge, as a sufficient physical understanding of these flows is still lacking. In an effort to move toward a physics-based model, A.A. Townsend introduced the hypothesis that the dominant energy-containing motions in wall turbulence are due to large eddies attached to the wall. From this simple hypothesis, the attached eddy model evolved, which has proven to be highly effective in predicting velocity statistics and providing a framework for interpreting the energy-containing flow physics at high Reynolds numbers. This review summarizes the hypothesis itself and the modeling attempts made thereafter, with a focus on the validity of the model's assumptions and its limitations. Here, we review studies on this topic, which have markedly increased in recent years, highlighting refinements, extensions, and promising future directions for attached eddy modeling.

252 citations

Journal ArticleDOI
TL;DR: Hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice are presented and are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.
Abstract: The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)]10.1063/1.1150021 for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

242 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1957-Nature
TL;DR: The Structure of Turbulent Shear Flow by Dr. A.Townsend as mentioned in this paper is a well-known work in the field of fluid dynamics and has been used extensively in many applications.
Abstract: The Structure of Turbulent Shear Flow By Dr. A. A. Townsend. Pp. xii + 315. 8¾ in. × 5½ in. (Cambridge: At the University Press.) 40s.

1,050 citations

Journal ArticleDOI
TL;DR: In this paper, a direct numerical simulation of incompressible channel flow at a friction Reynolds number of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows.
Abstract: A direct numerical simulation of incompressible channel flow at a friction Reynolds number ( ) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Karman constant . There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits dependence over a short range in wavenumber . Further, consistent with previous experimental observations, when these spectra are multiplied by (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the range.

910 citations

17 Jun 2009
TL;DR: This article explored the influence of different mechanisms in lowering barriers related to the orientation of universities and to the transactions involved in working with university partners, and explored the effects of collaboration experience, breadth of interaction, and inter-organizational trust on lowering different types of barriers.
Abstract: Although the literature on university–industry links has begun to uncover the reasons for, and types of, collaboration between universities and businesses, it offers relatively little explanation of ways to reduce the barriers in these collaborations. This paper seeks to unpack the nature of the obstacles to collaborations between universities and industry, exploring influence of different mechanisms in lowering barriers related to the orientation of universities and to the transactions involved in working with university partners. Drawing on a large-scale survey and public records, this paper explores the effects of collaboration experience, breadth of interaction, and inter-organizational trust on lowering different types of barriers. The analysis shows that prior experience of collaborative research lowers orientation-related barriers and that greater levels of trust reduce both types of barriers studied. It also indicates that breadth of interaction diminishes the orientation-related, but increases transaction-related barriers. The paper explores the implications of these findings for policies aimed at facilitating university–industry collaboration.

858 citations

Journal ArticleDOI
TL;DR: In this article, the authors review wall-bounded turbulent flows, particularly high-Reynolds number, zero-pressure gradient boundary layers, and fully developed pipe and channel flows.
Abstract: We review wall-bounded turbulent flows, particularly high–Reynolds number, zero–pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high–Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions, very-large-scale motions or superstructures exist at all Reynolds numbers, but they become increasingly important with Reynolds number in terms of their energy content and their interaction with the smaller scales near the wall. There is accumulating evidence that certain features are flow specific, such as the constants in the log law and the behavior of the very large scales and their interaction with the large scales (consisting of vortex packets). Moreover, the refined attached-eddy hypothesis continues to provide an important theoretical framework for the structure of wall-bounded turbulent flows.

821 citations

Journal ArticleDOI
TL;DR: In this paper, the authors distill the salient advances of recent origin, particularly those that challenge textbook orthodoxy, and highlight some of the outstanding questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the principal model parameters, and the scaling of mean flow and Reynolds stresses.
Abstract: Wall-bounded turbulent flows at high Reynolds numbers have become an increasingly active area of research in recent years. Many challenges remain in theory, scaling, physical understanding, experimental techniques, and numerical simulations. In this paper we distill the salient advances of recent origin, particularly those that challenge textbook orthodoxy. Some of the outstanding questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the principal model parameters such as the von Karman “constant,” the parametrization of roughness effects, and the scaling of mean flow and Reynolds stresses, are highlighted. Research avenues that may provide answers to these questions, notably the improvement of measuring techniques and the construction of new facilities, are identified. We also highlight aspects where differences of opinion persist, with the expectation that this discussion might mark the beginning of their resolution.

716 citations