scispace - formally typeset
Search or ask a question
Author

Jason Snape

Other affiliations: University of Warwick, Newcastle University, University of Wales  ...read more
Bio: Jason Snape is an academic researcher from AstraZeneca. The author has contributed to research in topics: Antibiotic resistance & Population. The author has an hindex of 30, co-authored 79 publications receiving 5599 citations. Previous affiliations of Jason Snape include University of Warwick & Newcastle University.


Papers
More filters
Journal ArticleDOI
TL;DR: This exercise prioritized the most critical questions regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas.
Abstract: Background: Over the past 10–15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and p...

1,058 citations

Journal ArticleDOI
TL;DR: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost and the anticipated benefit is an extended useful life span for current and future antibiotics.
Abstract: Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance.Objective: Our aim in this study ...

659 citations

Journal ArticleDOI
TL;DR: The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.
Abstract: The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.

535 citations

Journal ArticleDOI
TL;DR: It is proposed that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB, and a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers.
Abstract: Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4–8 March 2012 in Quebec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development “hot spots,” exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental “hot spot” compartments; and c) modifying traditional dose–response approaches to address doses of ARB for various health outcomes and pathways. Conclusions: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers. Citation: Ashbolt NJ, Amezquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, McEwen SA, Ryan JJ, Schonfeld J, Silley P, Snape JR, Van den Eede C, Topp E. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1001; http://dx.doi.org/10.1289/ehp.1206316

523 citations

Journal ArticleDOI
TL;DR: The term 'ecotoxicogenomics' is proposed to describe the integration of genomics (transcriptomics, proteomics and metabolomics) into ecotoxicology, which may provide a better mechanistic understanding of aquatic ecot toxicology.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
01 Jun 2007-Ecology
TL;DR: Survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals.
Abstract: Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.

3,423 citations

Journal ArticleDOI
TL;DR: The global situation of antibiotic resistance, its major causes and consequences, and key areas in which action is urgently needed are described and identified.
Abstract: The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

3,181 citations