scispace - formally typeset
Search or ask a question
Author

Jason W. Griffith

Bio: Jason W. Griffith is an academic researcher from Harvard University. The author has contributed to research in topics: Cytokine & Macrophage migration inhibitory factor. The author has an hindex of 15, co-authored 23 publications receiving 2397 citations. Previous affiliations of Jason W. Griffith include Vanderbilt University & University of Chicago.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
Abstract: Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein–coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.

1,475 citations

Journal ArticleDOI
TL;DR: It is shown that cell-permeable peptides increase viral cell entry, improve gene expression at reduced titers of virus and improve efficacy of therapeutically relevant genes in vivo.
Abstract: Small polybasic peptides derived from the transduction domains of certain proteins, such as the third alpha-helix of the Antennapedia (Antp) homeodomain, can cross the cell membrane through a receptor-independent mechanism. These cell-permeable molecules have been used as 'Trojan horses' to introduce biologically active cargo molecules such as DNA, peptides or proteins into cells. Using these cell-permeable peptides, we have developed an efficient and simple method to increase virally mediated gene delivery and protein expression in vitro and in vivo. Here, we show that cell-permeable peptides increase viral cell entry, improve gene expression at reduced titers of virus and improve efficacy of therapeutically relevant genes in vivo.

190 citations

Journal ArticleDOI
TL;DR: The characterized immunostimulatory activity of pure synthetic hemozoin in vitro and in vivo suggests that uric acid is released during malaria infection and may serve to augment the initial host response to he Mozoin via activation of the NALP3 inflammasome.
Abstract: The role of proinflammatory cytokine production in the pathogenesis of malaria is well established, but the identification of the parasite products that initiate inflammation is not complete. Hemozoin is a crystalline metabolite of hemoglobin digestion that is released during malaria infection. In the present study, we characterized the immunostimulatory activity of pure synthetic hemozoin (sHz) in vitro and in vivo. Stimulation of naive murine macrophages with sHz results in the MyD88-independent activation of NF-κB and ERK, as well as the release of the chemokine MCP-1; these responses are augmented by IFN-γ. In macrophages prestimulated with IFN-γ, sHz also results in a MyD88-dependent release of TNF-α. Endothelial cells, which encounter hemozoin after schizont rupture, respond to sHz by releasing IL-6 and the chemokines MCP-1 and IL-8. In vivo, the introduction of sHz into the peritoneal cavity produces an inflammatory response characterized by neutrophil recruitment and the production of MCP-1, KC, IL-6, IL-1α, and IL-1β. MCP-1 and KC are produced independently of MyD88, TLR2/4 and TLR9, and components of the inflammasome; however, neutrophil recruitment, the localized production of IL-1β, and the increase in circulating IL-6 require MyD88 signaling, the IL-1R pathway, and the inflammasome components ICE (IL-1β-converting enzyme), ASC (apoptosis-associated, speck-like protein containing CARD), and NALP3. Of note, inflammasome activation by sHz is reduced by allopurinol, which is an inhibitor of uric acid synthesis. These data suggest that uric acid is released during malaria infection and may serve to augment the initial host response to hemozoin via activation of the NALP3 inflammasome.

170 citations

Journal ArticleDOI
TL;DR: An intrinsic role for macrophage migration inhibitory factor (MIF) is described in the development of the anemic complications and bone marrow suppression that are associated with malaria infection and polymorphisms at the MIF locus are suggested to influence the levels of MIF produced in the innate response to malaria infection.
Abstract: The pathogenesis of malarial anemia is multifactorial, and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller, K.L., J.C. Schooley, K.L. Smith, B. Kullgren, L.J. Mahlmann, and P.H. Silverman. 1989. Exp. Hematol. 17:379–385; Yap, G.S., and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279–281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients, MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and γ interferon, which are known antagonists of hematopoiesis, even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production, and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia, improved erythroid progenitor development, and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications.

130 citations

Journal ArticleDOI
TL;DR: CD44 plays a previously unrecognized role in preventing exaggerated inflammatory responses to LPS by promoting the expression of negative regulators of TLR-4 signaling.
Abstract: CD44 is a transmembrane adhesion molecule and hemopoietic CD44 has an essential role in hyaluronan clearance and resolution of noninfectious lung injury. In this study, we examined the role of CD44 in acute pulmonary inflammation and in the regulation of LPS-TLR signaling. Following intratracheally LPS treatment, CD44−/− mice demonstrated an exaggerated inflammatory response characterized by increased inflammatory cell recruitment, elevated chemokine expression in bronchoalveolar lavage fluid, and a marked increase in NF-κB DNA-binding activity in lung tissue in vivo and in macrophages in vitro. Furthermore, CD44−/− mice were more susceptible to LPS-induced shock. Reconstitution of hemopoietic CD44 reversed the inflammatory phenotype. We further found that the induction of the negative regulators of TLR signaling IL-1R-associated kinase-M, Toll-interacting protein, and A20 by intratracheal LPS in vivo and in macrophages in vitro was significantly reduced in CD44−/− mice. Collectively, these data suggest CD44 plays a previously unrecognized role in preventing exaggerated inflammatory responses to LPS by promoting the expression of negative regulators of TLR-4 signaling.

129 citations


Cited by
More filters
Journal ArticleDOI
27 May 2011-Immunity
TL;DR: The role played by TLRs in mounting protective immune responses against infection and their crosstalk with other PRRs with respect to pathogen recognition is focused on.

3,113 citations

Journal ArticleDOI
TL;DR: This review describes the current understanding of the events of initiation of eukaryotic replication factors and how they are coordinated with cell cycle progression and emphasizes recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Abstract: ▪ Abstract The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.

2,169 citations

Journal ArticleDOI
TL;DR: This Review focuses on the main chemokines that are found in the human tumour microenvironment, and elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology.
Abstract: The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer.

1,271 citations

Journal ArticleDOI
TL;DR: The results reveal distinct host inflammatory cytokine profiles to SARS-CoV-2 infection in patients, and highlight the association between COVID-19 pathogenesis and excessive cytokine release such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and CCL4/Mip1B.
Abstract: Circulating in China and 158 other countries and areas, the ongoing COVID-19 outbreak has caused devastating mortality and posed a great threat to public health. However, efforts to identify effectively supportive therapeutic drugs and treatments has been hampered by our limited understanding of host immune response for this fatal disease. To characterize the transcriptional signatures of host inflammatory response to SARS-CoV-2 (HCoV-19) infection, we carried out transcriptome sequencing of the RNAs isolated from the bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) specimens of COVID-19 patients. Our results reveal distinct host inflammatory cytokine profiles to SARS-CoV-2 infection in patients, and highlight the association between COVID-19 pathogenesis and excessive cytokine release such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and CCL4/MIP1B. Furthermore, SARS-CoV-2 induced activation of apoptosis and P53 signalling pathway in lymphocytes may be the cause of patients' lymphopenia. The transcriptome dataset of COVID-19 patients would be a valuable resource for clinical guidance on anti-inflammatory medication and understanding the molecular mechansims of host response.

918 citations