scispace - formally typeset
Search or ask a question
Author

Jaspreet Singh

Bio: Jaspreet Singh is an academic researcher from Samsung. The author has contributed to research in topics: Additive white Gaussian noise & Channel capacity. The author has an hindex of 18, co-authored 39 publications receiving 1436 citations. Previous affiliations of Jaspreet Singh include University of California, Santa Barbara.

Papers
More filters
Journal ArticleDOI
TL;DR: This work evaluates the communication limits imposed by low-precision ADC for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input.
Abstract: As communication systems scale up in speed and bandwidth, the cost and power consumption of high-precision (e.g., 8-12 bits) analog-to-digital conversion (ADC) becomes the limiting factor in modern transceiver architectures based on digital signal processing. In this work, we explore the impact of lowering the precision of the ADC on the performance of the communication link. Specifically, we evaluate the communication limits imposed by low-precision ADC (e.g., 1-3 bits) for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input. For an ADC with K quantization bins (i.e., a precision of log2 K bits), we show that the input distribution need not have any more than K+1 mass points to achieve the channel capacity. For 2-bin (1-bit) symmetric quantization, this result is tightened to show that binary antipodal signaling is optimum for any signal-to- noise ratio (SNR). For multi-bit quantization, a dual formulation of the channel capacity problem is used to obtain tight upper bounds on the capacity. The cutting-plane algorithm is employed to compute the capacity numerically, and the results obtained are used to make the following encouraging observations : (a) up to a moderately high SNR of 20 dB, 2-3 bit quantization results in only 10-20% reduction of spectral efficiency compared to unquantized observations, (b) standard equiprobable pulse amplitude modulated input with quantizer thresholds set to implement maximum likelihood hard decisions is asymptotically optimum at high SNR, and works well at low to moderate SNRs as well.

410 citations

Proceedings ArticleDOI
25 Apr 2007
TL;DR: This paper begins with geometric arguments that address the problem of counting the number of distinct targets, given a snapshot of the sensor readings, and develops a particle filtering algorithm based on a cost function that penalizes changes in velocity.
Abstract: Recent work has shown that, despite the minimal information provided by a binary proximity sensor, a network of such sensors can provide remarkably good target tracking performance. In this paper, we examine the performance of such a sensor network for tracking multiple targets. We begin with geometric arguments that address the problem of counting the number of distinct targets, given a snapshot of the sensor readings. We provide necessary and sufficient criteria for an accurate target count in a one-dimensional setting, and provide a greedy algorithm that determines the minimum number of targets that is consistent with the sensor readings. While these combinatorial arguments bring out the difficulty of target counting based on sensor readings at a given time, they leave open the possibility of accurate counting and tracking by exploiting the evolution of the sensor readings across time. To this end, we develop a particle filtering algorithm based on a cost function that penalizes changes in velocity. An extensive set of simulations, as well as experiments with passive infrared sensors, are reported. We conclude that, despite the combinatorial complexity of target counting, probabilistic approaches based on fairly generic models for the trajectories yield respectable tracking performance.

163 citations

Journal ArticleDOI
TL;DR: This work investigates the feasibility of employing multiple antenna arrays to obtain diversity/multiplexing gains in mmwave systems, and develops reduced complexity algorithms for optimizing the choice of beamforming directions, premised on the sparse multipath structure of the mmwave channel.
Abstract: The use of the millimeter (mm) wave spectrum for next generation (5G) mobile communication has gained significant attention recently. The small carrier wavelengths at mmwave frequencies enable synthesis of compact antenna arrays, providing beamforming gains that compensate the increased propagation losses. In this work, we investigate the feasibility of employing multiple antenna arrays (at the transmitter and/or receiver) to obtain diversity/multiplexing gains in mmwave systems, where each of the arrays is capable of beamforming independently. Considering a codebook-based beamforming system (the set of possible beamforming directions is fixed a priori, e.g., to facilitate limited feedback), we observe that the complexity of jointly optimizing the beamforming directions across the multiple arrays is highly prohibitive, even for very reasonable system parameters. To overcome this bottleneck, we develop reduced complexity algorithms for optimizing the choice of beamforming directions, premised on the sparse multipath structure of the mmwave channel. Specifically, we reduce the cardinality of the joint beamforming search space, by restricting attention to a small set of dominant candidate directions. To obtain the set of dominant directions, we develop two complementary approaches: 1) based on computation of a novel spatial power metric; a detailed analysis of this metric shows that, in the limit of large antenna arrays, the selected candidate directions approach the channel's dominant angles of arrival and departure, and 2) precise estimation of the channel's (long-term) dominant angles of arrival, exploiting the correlations of the signals received across the different receiver subarrays. Our methods enable a drastic reduction of the optimization search space (a factor of 100 reduction), while delivering close to optimal performance, thereby indicating the potential feasibility of achieving diversity and multiplexing gains in mmwave systems.

161 citations

Journal ArticleDOI
TL;DR: Modem design issues related to carrier aggregation, enhanced ICIC for HetNet, detection of eight-layer transmission, reference signals for enhanced multi-antenna support, and HARQ buffer management are discussed.
Abstract: The commercial deployment of LTE Release 8 is gaining significant momentum all over the globe, and LTE is evolving to LTE-Advanced, which offers various new features to meet or exceed IMT-Advanced requirements. Since LTE-Advanced targets ambitious spectral efficiency and peak throughput, it poses tremendous system design challenges to operators and manufacturers, especially for mobile terminals. This article discusses modem design issues related to carrier aggregation, enhanced ICIC for HetNet, detection of eight-layer transmission, reference signals for enhanced multi-antenna support, and HARQ buffer management. We provide an overview of technical challenges and sketch the perspectives for tackling them to exploit the full benefits of the LTE-Advanced system.

118 citations

Proceedings ArticleDOI
16 Oct 2009
TL;DR: The economies of scale in modern communication systems are enabled by architectures that take advantage of Moore's law to implement most transceiver functionalities in digital signal processing (DSP), but the bottleneck in scaling such “mostly digital” architectures to multi-Gigabit rates becomes the analog-to-digital converter (ADC).
Abstract: The economies of scale in modern communication systems are enabled by architectures that take advantage of Moore's law to implement most transceiver functionalities in digital signal processing (DSP) The bottleneck in scaling such “mostly digital” architectures to multi-Gigabit rates becomes the analog-to-digital converter (ADC): high-speed, high-precision ADCs are either not available, or are too costly and power-hungry In this paper, we report on recent results on two approaches towards addressing this bottleneck The first is to simply use drastically low-precision (1–4 bit) ADCs than current practice This could be suitable for applications that require limited dynamic range (eg, line-of-sight communication using small constellations), but there are fundamental and algorithmic questions as to whether all the functions of a communication receiver can be realized with such a significant nonlinearity early in the processing The second is to use a time-interleaved ADC, where a large number of low-speed, high-precision ADCs are employed in parallel to realize a high-speed, high-precision ADC This is more generally applicable to applications requiring large dynamic range (eg, large constellations and/or dispersive channels), but the important question is how to effectively address the mismatch between the component ADCs, which leads to a performance floor if left uncompensated

112 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI

2,415 citations

Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: Treating the hybrid precoder design as a matrix factorization problem, effective alternating minimization (AltMin) algorithms will be proposed for two different hybrid precoding structures, i.e., the fully-connected and partially-connected structures, and simulation comparisons between the two hybrid precode structures will provide valuable design insights.
Abstract: Millimeter wave (mmWave) communications has been regarded as a key enabling technology for 5G networks, as it offers orders of magnitude greater spectrum than current cellular bands. In contrast to conventional multiple-input–multiple-output (MIMO) systems, precoding in mmWave MIMO cannot be performed entirely at baseband using digital precoders, as only a limited number of signal mixers and analog-to-digital converters can be supported considering their cost and power consumption. As a cost-effective alternative, a hybrid precoding transceiver architecture, combining a digital precoder and an analog precoder, has recently received considerable attention. However, the optimal design of such hybrid precoders has not been fully understood. In this paper, treating the hybrid precoder design as a matrix factorization problem, effective alternating minimization (AltMin) algorithms will be proposed for two different hybrid precoding structures, i.e., the fully-connected and partially-connected structures. In particular, for the fully-connected structure, an AltMin algorithm based on manifold optimization is proposed to approach the performance of the fully digital precoder, which, however, has a high complexity. Thus, a low-complexity AltMin algorithm is then proposed, by enforcing an orthogonal constraint on the digital precoder. Furthermore, for the partially-connected structure, an AltMin algorithm is also developed with the help of semidefinite relaxation. For practical implementation, the proposed AltMin algorithms are further extended to the broadband setting with orthogonal frequency division multiplexing modulation. Simulation results will demonstrate significant performance gains of the proposed AltMin algorithms over existing hybrid precoding algorithms. Moreover, based on the proposed algorithms, simulation comparisons between the two hybrid precoding structures will provide valuable design insights.

1,079 citations

Journal ArticleDOI
TL;DR: A survey of existing solutions and standards is carried out, and design guidelines in architectures and protocols for mmWave communications are proposed, to facilitate the deployment of mmWave communication systems in the future 5G networks.
Abstract: With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.

1,041 citations