scispace - formally typeset
Search or ask a question
Author

Jaume Flexas

Bio: Jaume Flexas is an academic researcher from University of the Balearic Islands. The author has contributed to research in topics: Stomatal conductance & Photosynthesis. The author has an hindex of 82, co-authored 246 publications receiving 31390 citations. Previous affiliations of Jaume Flexas include Centre national de la recherche scientifique & Max Planck Society.


Papers
More filters
Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
TL;DR: It is becoming apparent that plants perceive and respond to drought and salt stresses by quickly altering gene expression in parallel with physiological and biochemical alterations; this occurs even under mild to moderate stress conditions.

3,080 citations

Journal ArticleDOI
TL;DR: The analysis suggests that stomatal closure is the earliest response to drought and the dominant limitation to photosynthesis at mild to moderate drought, however, in parallel, progressive down-regulation or inhibition of metabolic processes leads to decreased RuBP content, which becomes the dominant limit at severe drought, and thereby inhibits photosynthetic CO2 assimilation.

1,350 citations

Journal ArticleDOI
TL;DR: Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilateCO(2), at mild to rather severe stress levels.
Abstract: Drought and salinity are two widespread environmental conditions leading to low water availability for plants. Low water availability is considered the main environmental factor limiting photosynthesis and, consequently, plant growth and yield worldwide. There has been a long-standing controversy as to whether drought and salt stresses mainly limit photosynthesis through diffusive resistances or by metabolic impairment. Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilate CO(2), at mild to rather severe stress levels. The general failure of metabolism observed at more severe stress suggests the occurrence of secondary oxidative stresses, particularly under high-light conditions. Estimates of photosynthetic limitations based on the photosynthetic response to intercellular CO(2) may lead to artefactual conclusions, even if patchy stomatal closure and the relative increase of cuticular conductance are taken into account, as decreasing mesophyll conductance can cause the CO(2) concentration in chloroplasts of stressed leaves to be considerably lower than the intercellular CO(2) concentration. Measurements based on the photosynthetic response to chloroplast CO(2) often confirm that the photosynthetic capacity is preserved but photosynthesis is limited by diffusive resistances in drought and salt-stressed leaves.

1,247 citations

Journal ArticleDOI
TL;DR: There is now evidence that g(liq) and, in some cases, g(w), are the main determinants of g(m).
Abstract: During photosynthesis, CO2 moves from the atmosphere (Ca) surrounding the leaf to the sub-stomatal internal cavi- ties (Ci) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (Cc) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (gm), and can be divided in at least three components, that is, conductance through intercellular air spaces (gias), through cell wall (gw) and through the liquid phase inside cells (gliq). A large body of evidence has accumulated in the past two decades indicat- ing that gm is sufficiently small as to significantly decrease Cc relative to Ci, therefore limiting photosynthesis. More- over, gm is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that gliq and, in some cases, gw, are the main determinants of gm. Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowl- edge on gm is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, fol- lowed by a re-examination of the range of variation of gm among plant species and functional groups, and a revision of the responses of gm to different external (biotic and abiotic) and internal (developmental, structural and meta- bolic) factors. The possible physiological bases for gm, including aquaporins and carbonic anhydrases, are dis- cussed. Possible ecological implications for variable gm are indicated, and the errors induced by neglecting gm when interpreting photosynthesis and carbon isotope discrimi- nation models are highlighted. Finally, a series of research priorities for the near future are proposed.

942 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is asserted that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context a biotic interaction milieu.
Abstract: There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.

3,715 citations

Journal ArticleDOI
TL;DR: The effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants, and the mechanism of drought resistance in plants on a morphological, physiological and molecular basis are reviewed.
Abstract: Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.

3,488 citations

Journal ArticleDOI
TL;DR: Attention is drawn to the perception and signalling processes (chemical and hydraulic) of water deficits, which are essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques.
Abstract: In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought - such as phenology, root size and depth, hydraulic conductivity and the storage of reserves - are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype-phenotype gap to be bridged, which is essential for faster progress in stress biology research.

3,287 citations

Journal ArticleDOI
01 May 2007-Oikos
TL;DR: An unambiguous definition of plant trait is given, with a particular emphasis on functional trait, and it is argued that this can be achieved by developing "integration functions" which can be grouped into functional response (community level) and effect (ecosystem level) algorithms.
Abstract: In its simplest definition, a trait is a surrogate of organismal performance, and this meaning of the term has been used by evolutionists for a long time. Over the last three decades, developments in community and ecosystem ecology have forced the concept of trait beyond these original boundaries, and trait-based approaches are now widely used in studies ranging from the level of organisms to that of ecosystems. Despite some attempts to fix the terminology, especially in plant ecology, there is currently a high degree of confusion in the use, not only of the term "trait" itself, but also in the underlying concepts it refers to. We therefore give an unambiguous definition of plant trait, with a particular emphasis on functional trait. A hierarchical perspective is proposed, extending the "performance paradigm" to plant ecology. "Functional traits" are defined as morpho-physiophenological traits which impact fitness indirectly via their effects on growth, reproduction and survival, the three components of individual performance. We finally present an integrative framework explaining how changes in trait values due to environmental variations are translated into organismal performance, and how these changes may influence processes at higher organizational levels. We argue that this can be achieved by developing "integration functions" which can be grouped into functional response (community level) and effect (ecosystem level) algorithms.

3,262 citations