scispace - formally typeset
Search or ask a question
Author

Javier Carrasco

Bio: Javier Carrasco is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Density functional theory & van der Waals force. The author has an hindex of 40, co-authored 108 publications receiving 5992 citations. Previous affiliations of Javier Carrasco include London Centre for Nanotechnology & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of cerium oxides have been studied in the framework of the LDA+\mathrm{U} and GGA+\Mathrm{GGA} implementations of density functional theory, and the dependence of selected observables on the effective U parameter has been investigated in detail.
Abstract: The electronic structure and properties of cerium oxides ($\mathrm{Ce}{\mathrm{O}}_{2}$ and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$) have been studied in the framework of the $\mathrm{LDA}+\mathrm{U}$ and $\mathrm{GGA}(\mathrm{PW}91)+\mathrm{U}$ implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, density of states, and formation energies of $\mathrm{Ce}{\mathrm{O}}_{2}$ and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$. For $\mathrm{Ce}{\mathrm{O}}_{2}$, the $\mathrm{LDA}+\mathrm{U}$ results are in better agreement with experiment than the $\mathrm{GGA}+\mathrm{U}$ results whereas for the computationally more demanding ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ both approaches give comparable accuracy. Furthermore, as expected, ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ is much more sensitive to the choice of the U value. Generally, the PW91 functional provides an optimal agreement with experiment at lower U energies than LDA does. In order to achieve a balanced description of both kinds of materials, and also of nonstoichiometric $\mathrm{Ce}{\mathrm{O}}_{2\ensuremath{-}x}$ phases, an appropriate choice of U is suggested for $\mathrm{LDA}+\mathrm{U}$ and $\mathrm{GGA}+\mathrm{U}$ schemes. Nevertheless, an optimum value appears to be property dependent, especially for ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$. Optimum U values are found to be, in general, larger than values determined previously in a self-consistent way.

612 citations

Journal ArticleDOI
TL;DR: This Review discusses the most exciting work in this area, in particular the emerging physical insight and general concepts about how water binds to metal surfaces, and provides a perspective on outstanding problems, challenges and open questions.
Abstract: Water/solid interfaces are relevant to a broad range of physicochemical phenomena and technological processes such as corrosion, lubrication, heterogeneous catalysis and electrochemistry. Although many fields have contributed to rapid progress in the fundamental knowledge of water at interfaces, detailed molecular-level understanding of water/solid interfaces comes mainly from studies on flat metal substrates. These studies have recently shown that a remarkably rich variety of structures form at the interface between water and even seemingly simple flat surfaces. In this Review we discuss the most exciting work in this area, in particular the emerging physical insight and general concepts about how water binds to metal surfaces. We also provide a perspective on outstanding problems, challenges and open questions.

532 citations

Journal ArticleDOI
TL;DR: Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst.
Abstract: Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.

255 citations

Journal ArticleDOI
TL;DR: In this paper, the van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorption remains unclear.
Abstract: The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as either physisorption or chemisorption. Van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene with the (111) surface of transition metals, ranging from weak adsorption (Ag and Au) to strong adsorption (Pt, Pd, Ir, and Rh). When vdW interactions are accurately accounted for, the barrier to adsorption predicted by standard density-functional theory (DFT) calculations essentially vanishes, producing a metastable precursor state on Pt and Ir surfaces. Notably, vdW forces contribute more to the binding of covalently bonded benzene than they do when benzene is physisorbed. Comparison to experimental data demonstrates that some of the recently developed methods for including vdW interactions in DFT allow quantitative treatment of both weakly and strongly adsorbed aromatic molecules on metal surfaces, extending the already excellent performance found for molecules in the gas phase.

253 citations

Journal ArticleDOI
TL;DR: It is found that the high specific capacitance and long cycling life of cobalt hydroxide involve a complete modification of the electrode morphology, which is usually believed to be unfavourable but in fact has little influence on the performance.
Abstract: Cobalt hydroxide is a promising electrode material for supercapacitors due to the high capacitance and long cyclability. However, the energy storage/conversion mechanism of cobalt hydroxide is still vague at the atomic level. Here we shed light on how cobalt hydroxide functions as a supercapacitor electrode at operando conditions. We find that the high specific capacitance and long cycling life of cobalt hydroxide involve a complete modification of the electrode morphology, which is usually believed to be unfavourable but in fact has little influence on the performance. The conversion during the charge/discharge process is free of any massive structural evolution, but with some tiny shuffling or adjustments of atom/ion species. The results not only unravel that the potential of supercapacitors could heavily rely on the underlying structural similarities of switching phases but also pave the way for future material design for supercapacitors, batteries and hybrid devices. Developing high-performance hybrid energy storage devices requires improved understanding of the mechanism that governs the electrochemical reactions. Here, the authors show the atomic-level working process of cobalt hydroxide electrode for pseudocapacitors.

221 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: This review has a wide view on all those aspects related to ceria which promise to produce an important impact on the authors' life, encompassing fundamental knowledge of CeO2 and its properties, characterization toolbox, emerging features, theoretical studies, and all the catalytic applications, organized by their degree of establishment on the market.
Abstract: Cerium dioxide (CeO2, ceria) is becoming an ubiquitous constituent in catalytic systems for a variety of applications. 2016 sees the 40th anniversary since ceria was first employed by Ford Motor Company as an oxygen storage component in car converters, to become in the years since its inception an irreplaceable component in three-way catalysts (TWCs). Apart from this well-established use, ceria is looming as a catalyst component for a wide range of catalytic applications. For some of these, such as fuel cells, CeO2-based materials have almost reached the market stage, while for some other catalytic reactions, such as reforming processes, photocatalysis, water-gas shift reaction, thermochemical water splitting, and organic reactions, ceria is emerging as a unique material, holding great promise for future market breakthroughs. While much knowledge about the fundamental characteristics of CeO2-based materials has already been acquired, new characterization techniques and powerful theoretical methods are dee...

1,710 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce density functional theory and review recent progress in its application to transition metal chemistry, including local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and solids.
Abstract: We introduce density functional theory and review recent progress in its application to transition metal chemistry. Topics covered include local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and catalysis, including molecules, clusters, nanoparticles, surfaces, and solids.

1,449 citations