scispace - formally typeset
Search or ask a question
Author

Javier Duarte

Bio: Javier Duarte is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Large Hadron Collider & Standard Model. The author has an hindex of 83, co-authored 463 publications receiving 22855 citations. Previous affiliations of Javier Duarte include Fermilab & University of Trento.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented.

575 citations

Journal ArticleDOI
TL;DR: In this paper, the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported using the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods.
Abstract: Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1 inverse femtobarns at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at 8 TeV. A clear signal is observed in the diphoton channel at a mass close to 125 GeV with a local significance of 5.7 sigma, where a significance of 5.2 sigma is expected for the standard model Higgs boson. The mass is measured to be 124.70 +/- 0.34 GeV = 124.70 +/- 0.31 (stat) +/- 0.15 (syst) GeV, and the best-fit signal strength relative to the standard model prediction is 1.14 +0.26/-0.23 = 1.14 +/- 0.21 (stat) +0.09/-0.05 (syst) +0.13/-0.09 (theo). Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.

486 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2265 moreInstitutions (153)
TL;DR: Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented and constraints are placed on various two Higgs doublet models.
Abstract: Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton–proton collision data set recorded with the CMS detector in 2016 at $\sqrt{s}=13\,\text {Te}\text {V} $ , corresponding to an integrated luminosity of 35.9 ${\,\text {fb}^{-1}} $ . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a $\mathrm {W}$ or $\mathrm {Z}$ boson, or a top quark-antiquark pair) and the following decay modes: $\mathrm {H} \rightarrow \gamma \gamma $ , $\mathrm {Z}\mathrm {Z}$ , $\mathrm {W}\mathrm {W}$ , $\mathrm {\tau }\mathrm {\tau }$ , $\mathrm {b} \mathrm {b} $ , and $\mathrm {\mu }\mathrm {\mu }$ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be $\mu =1.17\pm 0.10$ , assuming a Higgs boson mass of $125.09\,\text {Ge}\text {V} $ . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.

451 citations

Journal ArticleDOI
TL;DR: The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at 2.76 TeV by the CMS experiment at the LHC as mentioned in this paper.
Abstract: The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range pt = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 5 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher pt, this suppression is significantly reduced, approaching roughly a factor of 2 for particles with pt in the range pt=40-100 GeV/c.

446 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2298 moreInstitutions (160)
TL;DR: In this article, a search for invisible decays of a Higgs boson via vector boson fusion is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy root s = 13 TeV, corresponding to an integrated luminosity of 35.9fb(-1).

347 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
TL;DR: Delphes as mentioned in this paper is a fast-simulation of a multipurpose detector for phenomenological studies, including a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system.
Abstract: The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.

2,692 citations