scispace - formally typeset
Search or ask a question
Author

Javier Duarte

Bio: Javier Duarte is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Graph (abstract data type) & Benchmark (computing). The author has an hindex of 6, co-authored 12 publications receiving 87 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The LHC Olympics 2020 as discussed by the authors is a community challenge accompanied by a set of simulated collider events, where participants have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly.
Abstract: A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.

48 citations

Posted Content
TL;DR: The LHC Olympics 2020 as mentioned in this paper is a community challenge accompanied by a set of simulated collider events, where participants have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly.
Abstract: A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.

36 citations

Journal ArticleDOI
13 Jan 2021
TL;DR: In this paper, an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on field-programmable gate arrays (FPGAs) is introduced.
Abstract: We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on field-programmable gate arrays (FPGAs). By extending the hls4ml library, we demonstrate an inference latency of 5 mu s using convolutional architectures, targeting microsecond latency applications like those at the CERN Large Hadron Collider. Considering benchmark models trained on the Street View House Numbers Dataset, we demonstrate various methods for model compression in order to fit the computational constraints of a typical FPGA device used in trigger and data acquisition systems of particle detectors. In particular, we discuss pruning and quantization-aware training, and demonstrate how resource utilization can be significantly reduced with little to no loss in model accuracy. We show that the FPGA critical resource consumption can be reduced by 97% with zero loss in model accuracy, and by 99% when tolerating a 6% accuracy degradation.

33 citations

Journal ArticleDOI
TL;DR: In this paper, an end-to-end trainable, machine-learned particle-flow algorithm based on parallelizable, computationally efficient, and scalable graph neural network optimized using a multi-task objective on simulated events is presented.
Abstract: In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum. In view of the planned high-luminosity upgrade of the CERN Large Hadron Collider (LHC), it is necessary to revisit existing reconstruction algorithms and ensure that both the physics and computational performance are sufficient in an environment with many simultaneous proton–proton interactions (pileup). Machine learning may offer a prospect for computationally efficient event reconstruction that is well-suited to heterogeneous computing platforms, while significantly improving the reconstruction quality over rule-based algorithms for granular detectors. We introduce MLPF, a novel, end-to-end trainable, machine-learned particle-flow algorithm based on parallelizable, computationally efficient, and scalable graph neural network optimized using a multi-task objective on simulated events. We report the physics and computational performance of the MLPF algorithm on a Monte Carlo dataset of top quark–antiquark pairs produced in proton–proton collisions in conditions similar to those expected for the high-luminosity LHC. The MLPF algorithm improves the physics response with respect to a rule-based benchmark algorithm and demonstrates computationally scalable particle-flow reconstruction in a high-pileup environment.

31 citations

DOI
01 Dec 2021
TL;DR: In this article, the authors adapt the physics-motivated interaction network (IN) GNN to the problem of particle tracking in pileup conditions similar to those expected at the high-luminosity Large Hadron Collider.
Abstract: Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.

15 citations


Cited by
More filters
Posted Content
TL;DR: In this paper, the authors present a survey of approaches to quantizing the numerical values in deep neural network computations, covering the advantages/disadvantages of current methods and presenting a useful snapshot of the current research in quantization for Neural Networks.
Abstract: As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

91 citations

Journal ArticleDOI
TL;DR: In this paper, a method for designing optimally heterogeneously quantized versions of deep neural network models for minimum energy, high-accuracy, nanosecond inference and fully automated deployment on chip is introduced.
Abstract: Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms, edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption. One technique to limit model size is quantization, which implies using fewer bits to represent weights and biases. Such an approach usually results in a decline in performance. Here, we introduce a method for designing optimally heterogeneously quantized versions of deep neural network models for minimum-energy, high-accuracy, nanosecond inference and fully automated deployment on chip. With a per-layer, per-parameter type automatic quantization procedure, sampling from a wide range of quantizers, model energy consumption and size are minimized while high accuracy is maintained. This is crucial for the event selection procedure in proton–proton collisions at the CERN Large Hadron Collider, where resources are strictly limited and a latency of $${\mathcal{O}}(1)\,\upmu{\rm{s}}$$ is required. Nanosecond inference and a resource consumption reduced by a factor of 50 when implemented on field-programmable gate array hardware are achieved. With edge computing on custom hardware, real-time inference with deep neural networks can reach the nanosecond timescale. An important application in this regime is event processing at particle collision detectors like those at the Large Hadron Collider (LHC). To ensure high performance as well as reduced resource consumption, a method is developed, and made available as an extension of the Keras library, to automatically design optimal quantization of the different layers in a deep neural network.

60 citations

Journal ArticleDOI
TL;DR: In this article , the authors adopted a definition of scientific understanding from the philosophy of science that enabled them to overview the scattered literature on the topic and, combined with dozens of anecdotes from scientists, map out three dimensions of computer-assisted scientific understanding.
Abstract: An oracle that correctly predicts the outcome of every particle physics experiment, the products of every possible chemical reaction or the function of every protein would revolutionize science and technology. However, scientists would not be entirely satisfied because they would want to comprehend how the oracle made these predictions. This is scientific understanding, one of the main aims of science. With the increase in the available computational power and advances in artificial intelligence, a natural question arises: how can advanced computational systems, and specifically artificial intelligence, contribute to new scientific understanding or gain it autonomously? Trying to answer this question, we adopted a definition of 'scientific understanding' from the philosophy of science that enabled us to overview the scattered literature on the topic and, combined with dozens of anecdotes from scientists, map out three dimensions of computer-assisted scientific understanding. For each dimension, we review the existing state of the art and discuss future developments. We hope that this Perspective will inspire and focus research directions in this multidisciplinary emerging field.

50 citations

Journal ArticleDOI
TL;DR: In this article, a multilayer perceptron is used to detect deviations from a reference model in large multivariate datasets, which is designed to be sensitive to small discrepancies that arise in datasets dominated by the reference model.
Abstract: We discuss a method that employs a multilayer perceptron to detect deviations from a reference model in large multivariate datasets. Our data analysis strategy does not rely on any prior assumption on the nature of the deviation. It is designed to be sensitive to small discrepancies that arise in datasets dominated by the reference model. The main conceptual building blocks were introduced in D’Agnolo and Wulzer (Phys Rev D 99 (1), 015014. https://doi.org/10.1103/PhysRevD.99.015014 . arXiv:1806.02350 [hep-ph], 2019). Here we make decisive progress in the algorithm implementation and we demonstrate its applicability to problems in high energy physics. We show that the method is sensitive to putative new physics signals in di-muon final states at the LHC. We also compare our performances on toy problems with the ones of alternative methods proposed in the literature.

49 citations

Journal ArticleDOI
TL;DR: In this article, an autoencoder-based strategy was proposed to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so, and a symmetric decoder capable of simultaneously reconstructing edge features and node features.
Abstract: We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of W bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.

47 citations