scispace - formally typeset
Search or ask a question
Author

Javier Farinas

Bio: Javier Farinas is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Aquaporin & Green fluorescent protein. The author has an hindex of 10, co-authored 10 publications receiving 1681 citations. Previous affiliations of Javier Farinas include Harvard University & Scripps Research Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH and suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonations and conformational changes at lower pH.

700 citations

Journal ArticleDOI
TL;DR: A recent review summarizes recent progress in water-transporting mechanisms across cell membranes as mentioned in this paper, including water channels, aquaporins, and their functional properties, genetics, and cellular distributions of these proteins.
Abstract: This review summarizes recent progress in water-transporting mechanisms across cell membranes. Modern biophysical concepts of water transport and new measurement strategies are evaluated. A family of water-transporting proteins (water channels, aquaporins) has been identified, consisting of small hydrophobic proteins expressed widely in epithelial and nonepithelial tissues. The functional properties, genetics, and cellular distributions of these proteins are summarized. The majority of molecular-level information about water-transporting mechanisms comes from studies on CHIP28, a 28-kDa glycoprotein that forms tetramers in membranes; each monomer contains six putative helical domains surrounding a central aqueous pathway and functions independently as a water-selective channel. Only mutations in the vasopressin-sensitive water channel have been shown to cause human disease (non-X-linked congenital nephrogenic diabetes insipidus); the physiological significance of other water channels remains unproven. One mercurial-insensitive water channel has been identified, which has the unique feature of multiple overlapping transcriptional units. Systems for expression of water channel proteins are described, including Xenopus oocytes, mammalian and insect cells, and bacteria. Further work should be directed at elucidation of the role of water channels in normal physiology and disease, molecular analysis of regulatory mechanisms, and water channel structure determination at atomic resolution.

319 citations

Journal ArticleDOI
TL;DR: These water channel-transfected cells represent an in vitro system that will allow the detailed dissection of mechanisms involved in the processing, targeting, and trafficking of proteins via constitutive versus regulated intracellular transport pathways.
Abstract: The aquaporins (AQPs) are a family of homologous water-channel proteins that can be inserted into epithelial cell plasma membranes either constitutively (AQP1) or by regulated exocytosis following vasopressin stimulation (AQP2). LLC-PK1 porcine renal epithelial cells were stably transfected with cDNA encoding AQP2 (tagged with a C-terminal c-Myc epitope) or rat kidney AQP1 cDNA in an expression vector containing a cytomegalovirus promoter. Immunofluorescence staining revealed that AQP1 was mainly localized to the plasma membrane, whereas AQP2 was predominantly located on intracellular vesicles. After treatment with vasopressin or forskolin for 10 min, AQP2 was relocated to the plasma membrane, indicating that this relocation was induced by cAMP. The location of AQP1 did not change. The basal water permeability of AQP1-transfected cells was 2-fold greater than that of nontransfected cells, whereas the permeability of AQP2-transfected cells increased significantly only after vasopressin treatment. Endocytotic uptake of fluorescein isothiocyanate-coupled dextran was stimulated 6-fold by vasopressin in AQP2-transfected cells but was only slightly increased in wild-type or AQP1-transfected cells. This vasopressin-induced endocytosis was inhibited in low-K+ medium, which selectively affects clathrin-mediated endocytosis. These water channel-transfected cells represent an in vitro system that will allow the detailed dissection of mechanisms involved in the processing, targeting, and trafficking of proteins via constitutive versus regulated intracellular transport pathways.

176 citations

Journal ArticleDOI
TL;DR: Light microscopy with spatial filtering is established as a technically simple and quantitative method to measure water permeability in cell layers and provides the first measurement of the apical and basolateral membrane permeabilities of several important epithelial cell types.
Abstract: A method was developed to measure the osmotic water permeability (Pf) of plasma membranes in cell layers and applied to cells and epithelia expressing molecular water channels. It was found that the integrated intensity of monochromatic light in a phase contrast or dark field microscope was dependent on relative cell volume. For cells of different size and shape (Sf9, MDCK, CHO, A549, tracheal epithelia, BHK), increased cell volume was associated with decreased signal intensity; generally the signal decreased 10–20% for a twofold increase in cell volume. A theory relating signal intensity to relative cell volume was developed based on spatial filtering and changes in optical path length associated with cell volume changes. Theory predictions were confirmed by signal measurements of cell layers bathed in solutions of various osmolarities and refractive indices. The excellent signal-to-noise ratio of the transmitted light detection permitted measurement of cell volume changes of <1%. The method was applied to characterize transfected cells and tissues that natively express water channels. Pf in control Chinese hamster ovary cells was low (0.0012 cm/s at 23°C) and increased more than fourfold upon stable transfection with aquaporins 1, 2, 4, or 5. Pf in apical and basolateral membranes in polarized epithelial cells grown on porous supports was measured. Pfbl and Pfap were 0.0011 and 0.0024 cm/s (MDCK cells), and 0.0039 and 0.0052 cm/s (human tracheal cells) at 23°C. In intact toad urinary bladder, basolateral Pf was 0.036 cm/s and apical membrane Pf after vasopressin stimulation was 0.025 cm/s at 23°C. The results establish light microscopy with spatial filtering as a technically simple and quantitative method to measure water permeability in cell layers and provide the first measurement of the apical and basolateral membrane permeabilities of several important epithelial cell types.

119 citations

Journal ArticleDOI
TL;DR: The development of strategies to measure plasma membrane osmotic water permeability in epithelial cells has been motivated by the identification of a family of molecular water channels and a general approach utilizing interferometry to measure cell shape and volume was applied.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Using this method, evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes is provided, suggesting that Rab7 is involved in this step.
Abstract: During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.

1,967 citations

Journal ArticleDOI
TL;DR: Advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein–protein interactions.
Abstract: Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.

1,895 citations

Journal ArticleDOI
TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Abstract: When a molecule absorbs a photon of appropriate energy, a chain of photophysical events ensues, such as internal conversion or vibrational relaxation (loss of energy in the absence of light emission), fluorescence, intersystem crossing (from singlet state to a triplet state) and phosphorescence, as shown in the Jablonski diagram for organic molecules (Fig. 1). Each of the processes occurs with a certain probability, characterized by decay rate constants (k). It can be shown that the average length of time τ for the set of molecules to decay from one state to another is reciprocally proportional to the rate of decay: τ = 1/k. This average length of time is called the mean lifetime, or simply lifetime. It can also be shown that the lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e. Correspondingly, the fluorescence lifetime is the time required by a population of excited fluorophores to decrease exponentially to N/e via the loss of energy through fluorescence and other non-radiative processes. The lifetime of photophycal processes vary significantly from tens of femotoseconds for internal conversion1,2 to nanoseconds for fluorescence and microseconds or seconds for phosphorescence.1 Open in a separate window Figure 1 Jablonski diagram and a timescale of photophysical processes for organic molecules.

1,829 citations

Journal ArticleDOI
TL;DR: A general method for the covalent labeling of fusion proteins in vivo that complements existing methods for noncovalentlabeling of proteins and that may open up new ways of studying proteins in living cells is described.
Abstract: Characterizing the movement, interactions, and chemical microenvironment of a protein inside the living cell is crucial to a detailed understanding of its function. Most strategies aimed at realizing this objective are based on genetically fusing the protein of interest to a reporter protein that monitors changes in the environment of the coupled protein. Examples include fusions with fluorescent proteins, the yeast two-hybrid system, and split ubiquitin. However, these techniques have various limitations, and considerable effort is being devoted to specific labeling of proteins in vivo with small synthetic molecules capable of probing and modulating their function. These approaches are currently based on the noncovalent binding of a small molecule to a protein, the formation of stable complexes between biarsenical compounds and peptides containing cysteines, or the use of biotin acceptor domains. Here we describe a general method for the covalent labeling of fusion proteins in vivo that complements existing methods for noncovalent labeling of proteins and that may open up new ways of studying proteins in living cells.

1,702 citations

Journal ArticleDOI
TL;DR: Various Indicators for Near-Neutral pH Values and Design of pH-Sensitive Cyanine Dyes and Miscellaneous Small Molecule pHi Indicators are presented.
Abstract: 5. Cyanine-Based pHi Indicators 2717 5.1. Design of pH-Sensitive Cyanine Dyes 2717 5.2. Near-Neutral Cyanine-Based pH Indicators 2718 5.3. Acidic Cyanine-Based pH Indicators 2719 6. Miscellaneous Small Molecule pHi Indicators 2719 6.1. Various Indicators for Near-Neutral pH Values 2719 6.1.1. Europium Complex 2719 6.1.2. Fluorene Derivative 2719 6.1.3. 1,4-Dihydroxyphthalonitrile (1,4-DHPN) 2720 6.1.4. 8-Hydroxypyrene-1,3,6-trisulfonic acid (HPTS) 2720

1,470 citations