scispace - formally typeset
Search or ask a question
Author

Javier J. Concepcion

Bio: Javier J. Concepcion is an academic researcher from Brookhaven National Laboratory. The author has contributed to research in topics: Ruthenium & Catalysis. The author has an hindex of 48, co-authored 97 publications receiving 7715 citations. Previous affiliations of Javier J. Concepcion include University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: A general reactivity toward water oxidation in a class of molecules whose properties can be "tuned" systematically by synthetic variations based on mechanistic insight is described.
Abstract: Mastering the production of solar fuels by artificial photosynthesis would be a considerable feat, either by water splitting into hydrogen and oxygen or reduction of CO2 to methanol or hydrocarbons: 2H2O + 4hν → O2 + 2H2; 2H2O + CO2 + 8hν → 2O2 + CH4. It is notable that water oxidation to dioxygen is a key half-reaction in both. In principle, these solar fuel reactions can be coupled to light absorption in molecular assemblies, nanostructured arrays, or photoelectrochemical cells (PECs) by a modular approach. The modular approach uses light absorption, electron transfer in excited states, directed long range electron transfer and proton transfer, both driven by free energy gradients, combined with proton coupled electron transfer (PCET) and single electron activation of multielectron catalysis. Until recently, a lack of molecular catalysts, especially for water oxidation, has limited progress in this area. Analysis of water oxidation mechanism for the “blue” Ru dimer cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(b...

739 citations

Journal ArticleDOI
TL;DR: Single-site catalytic water oxidation by the monomeric complexes [Ru(tpy)(bpm)(OH2)]2+ and [Ru[Ru( tpy)(bpz)( OH2]2+) by a well-defined mechanism involving RuV═O is reported.
Abstract: Water oxidation is a key reaction in natural photosynthesis and in many schemes for artificial photosynthesis. Although metal complexes capable of oxidizing water based on Ru, Mn, and Ir are known, a significant question is whether or not dimeric or higher order structures are required for water oxidation. We report here single-site catalytic water oxidation by the monomeric complexes [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+ (tpy is 2,2′:6′,2′′-terpyridine; bpm is 2,2′-bipyrimidine; bpz is 2,2′-bipyrazine) by a well-defined mechanism involving RuV═O.

599 citations

Journal ArticleDOI
TL;DR: The mechanism of Ce(IV) water oxidation catalyzed by Ru(tpy)(bpm)(OH(2))](2+) and related single-site catalysts has been determined by a combination of mixing and stopped-flow experiments with spectrophotometric monitoring.
Abstract: The mechanism of Ce(IV) water oxidation catalyzed by [Ru(tpy)(bpm)(OH2)]2+ (tpy = 2,2′:6′,2′′-terpyridine; bpm = 2,2′-bipyrimidine) and related single-site catalysts has been determined by a combination of mixing and stopped-flow experiments with spectrophotometric monitoring The mechanism features O---O coupling by water attack on RuV═O3+ and three peroxidic intermediates that have been characterized by a combination of spectroscopy and DFT calculations

436 citations

Journal ArticleDOI
TL;DR: In the early 1970s, the works by Fujishima and Honda (1) and Honda et al. (2) reported on the results of a now famous experiment that showed that band gap excitation of anatase TiO2 in a photoelectrochemical cell with a Pt counter electrode and an applied bias resulted in water splitting into hydrogen and oxygen.
Abstract: In the early 1970s, the works by Fujishima and Honda (1) and Honda et al. (2) reported on the results of a now famous experiment. They showed that band gap excitation of anatase TiO2 in a photoelectrochemical cell with a Pt counter electrode and an applied bias resulted in water splitting into hydrogen and oxygen. The timing of the result was impeccable. In 1973, the Organization of the Petroleum Exporting Countries (OPEC) declared an embargo on oil imports to the West, resulting in gasoline shortages and long lines at gas pumps. Suddenly, there was a pressing need for energy independence and new ways of providing for the energy-hungry economies of Western Europe, Japan, and the United States. The international research community responded. There was a short lived explosion of interest in converting sunlight into high-energy molecules by what we now call artificial photosynthesis to make solar fuels. Target reactions were water splitting into hydrogen and oxygen (1) and light-driven reduction of CO2 by water to give CO, other oxygenates, or hydrocarbons. Methane is shown as the product in equation 2, but the ultimate target is liquid hydrocarbons to power our existing energy infrastructure (1 and 2):

399 citations

Journal ArticleDOI
TL;DR: Application of density functional theory calculations to molecular and electronic structure supports the proposal of strong electronic coupling across the micro-oxo bridge and reveals similarities in the mechanism with the blue dimer and significant differences.
Abstract: The blue dimer, cis, cis-[(bpy)2(H2O)Ru(III)ORu(III)(H2O)(bpy)2](4+), is the first designed, well-defined molecule known to function as a catalyst for water oxidation. It meets the stoichiometric requirements for water oxidation, 2H2O --> -4e(-), -4H(+) O-O, by utilizing proton-coupled electron-transfer (PCET) reactions in which both electrons and protons are transferred. This avoids charge buildup, allowing for the accumulation of multiple oxidative equivalents at the Ru-O-Ru core. PCET and pathways involving coupled electron-proton transfer (EPT) are also used to avoid high-energy intermediates. Application of density functional theory calculations to molecular and electronic structure supports the proposal of strong electronic coupling across the micro-oxo bridge. The results of this analysis provide explanations for important details of the descriptive chemistry. Stepwise e(-)/H(+) loss leads to the higher oxidation states [(bpy)2(O)Ru(V)ORu(IV)(O)(bpy)2] (3+) (Ru(V)ORu(IV)) and [(bpy)2(O)Ru(V)ORu(V)(O)(bpy)2](4+) (Ru(V)ORu(V)). Both oxidize water, Ru(V)ORu(IV) stoichiometrically and Ru(V)ORu(V) catalytically. In strongly acidic solutions (HNO3, HClO4, and HSO3CF3) with excess Ce(IV), the catalytic mechanism involves O---O coupling following oxidation to Ru(V)ORu(V), which does not build up as a detectable intermediate. Direct evidence has been found for intervention of a peroxidic intermediate. Oxidation of water by Ru(V)ORu(IV) is far slower. It plays a role late in the catalytic cycle when Ce(IV) is depleted and is one origin of anated intermediates such as [(bpy)2(HO)Ru(IV)ORu(IV)(NO3)(bpy)2](4+), which are deleterious in tying up active components in the catalytic cycle. These intermediates slowly return to [(bpy)2(H2O)Ru(IV)ORu(III)(OH2)(bpy)2](5+) with anion release followed by water oxidation. The results of a recent analysis of water oxidation in the oxygen-evolving complex (OEC) of photosystem II reveal similarities in the mechanism with the blue dimer and significant differences. The OEC resides in the thylakoid membrane in the chloroplasts of green plants, and careful attention is paid in the structure to PCET, EPT, and long-range proton transfer by sequential local proton transfers. The active site for water oxidation is a CaMn 4 cluster, which includes an appended Mn site, Mn(4), where O---O coupling is thought to occur. Photochemical electron transfer results in oxidation of tyrosine Y Z to Y Z (.), which is approximately 7 A from Mn(4). It subsequently oxidizes the OEC through the stepwise stages of the Kok cycle. O---O coupling appears to occur through an initial peroxidic intermediate formed by redox nucleophilic attack of coordinated OH(-) in Ca-OH(-) on Mn (IV)=O.

367 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: The Scope of Review: Large-Scale Centralized Energy Storage, Chemical Energy Storage: Solar Fuels, and Capacitors 6486 5.1.2.
Abstract: 1. Setting the Scope of the Challenge 6474 1.1. The Need for Solar Energy Supply and Storage 6474 1.2. An Imperative for Discovery Research 6477 1.3. Scope of Review 6478 2. Large-Scale Centralized Energy Storage 6478 2.1. Pumped Hydroelectric Energy Storage (PHES) 6479 2.2. Compressed Air Energy Storage (CAES) 6480 3. Smaller Scale Grid and Distributed Energy Storage 6481 3.1. Flywheel Energy Storage (FES) 6481 3.2. Superconducting Magnetic Energy Storage 6482 4. Chemical Energy Storage: Electrochemical 6482 4.1. Batteries 6482 4.1.1. Lead-Acid Batteries 6483 4.1.2. Alkaline Batteries 6484 4.1.3. Lithium-Ion Batteries 6484 4.1.4. High-Temperature Sodium Batteries 6484 4.1.5. Liquid Flow Batteries 6485 4.1.6. Metal-Air Batteries 6485 4.2. Capacitors 6485 5. Chemical Energy Storage: Solar Fuels 6486 5.1. Solar Fuels in Nature 6486 5.2. Artificial Photosynthesis and General Considerations of Water Splitting 6486

2,570 citations

Journal ArticleDOI
TL;DR: The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Abstract: This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO−, CH2O, CH4, H2C2O4/HC2O4−, C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution–electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

2,205 citations

Journal ArticleDOI
TL;DR: Proton-coupled electron transfer is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues and several are reviewed.
Abstract: ▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several are...

2,182 citations

Journal ArticleDOI
11 Sep 2015-Science
TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Abstract: Conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added carbon products is an important challenge for clean energy research. Here we report modular optimization of covalent organic frameworks (COFs), in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO. The catalysts exhibit high Faradaic efficiency (90%) and turnover numbers (up to 290,000, with initial turnover frequency of 9400 hour(-1)) at pH 7 with an overpotential of -0.55 volts, equivalent to a 26-fold improvement in activity compared with the molecular cobalt complex, with no degradation over 24 hours. X-ray absorption data reveal the influence of the COF environment on the electronic structure of the catalytic cobalt centers.

1,844 citations