scispace - formally typeset
Search or ask a question
Author

Javier Lorenzo-Navarro

Bio: Javier Lorenzo-Navarro is an academic researcher from University of Las Palmas de Gran Canaria. The author has contributed to research in topics: Face detection & Computer science. The author has an hindex of 13, co-authored 61 publications receiving 799 citations.


Papers
More filters
Proceedings ArticleDOI
TL;DR: This competition is to compare the performance of different state-of-the-art algorithms on the same database using a unique evaluation method and the results suggest the investigation of more complex attacks.
Abstract: Spoofing identities using photographs is one of the most common techniques to attack 2-D face recognition systems. There seems to exist no comparative studies of different techniques using the same protocols and data. The motivation behind this competition is to compare the performance of different state-of-the-art algorithms on the same database using a unique evaluation method. Six different teams from universities around the world have participated in the contest. Use of one or multiple techniques from motion, texture analysis and liveness detection appears to be the common trend in this competition. Most of the algorithms are able to clearly separate spoof attempts from real accesses. The results suggest the investigation of more complex attacks.

180 citations

Proceedings ArticleDOI
01 Jan 2008
TL;DR: This paper analyzes the individual performance of all those public classifiers getting the best performance for each target and proposes a simple hierarchical combination of those classifiers to increase the facial feature detection rate while reducing the face false detection rate.
Abstract: Fast and reliable face and facial feature detection are required abilities for any Human Computer Interaction approach based on Computer Vision. Since the publication of the Viola-Jones object detection framework and the more recent open source implementation, an increasing number of applications have appeared, particularly in the context of facial processing. In this respect, the OpenCV community shares a collection of public domain classifiers for this scenario. However, as far as we know these classifiers have never been evaluated and/or compared. In this paper we analyze the individual performance of all those public classifiers getting the best performance for each target. These results are valid to define a baseline for future approaches. Additionally we propose a simple hierarchical combination of those classifiers to increase the facial feature detection rate while reducing the face false detection rate.

104 citations

Proceedings ArticleDOI
04 May 2015
TL;DR: Most of the participants tackled the image-restricted challenge and experimental results demonstrated better kinship verification performance than the baseline methods provided by the organizers.
Abstract: The aim of the Kinship Verification in the Wild Evaluation (held in conjunction with the 2015 IEEE International Conference on Automatic Face and Gesture Recognition, Ljubljana, Slovenia) was to evaluate different kinship verification algorithms. For this task, two datasets were made available and three possible experimental protocols (unsupervised, image-restricted, and image-unrestricted) were designed. Five institutions submitted their results to the evaluation: (i) Politecnico di Torino, Italy; (ii) LIRIS-University of Lyon, France; (iii) Universidad de Las Palmas de Gran Canaria, Spain; (iv) Nanjing University of Aeronautics and Astronautics, China; and (v) Bar Ilan University, Israel. Most of the participants tackled the image-restricted challenge and experimental results demonstrated better kinship verification performance than the baseline methods provided by the organizers.

100 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to study the performance of this specific facial area in the currently most challenging large dataset for gender classification, and suggest the validity of the periocular area particularly in difficult scenarios where the whole face is not visible, or has been altered.

61 citations

Journal ArticleDOI
TL;DR: An architecture based on deep learning networks is presented with the aim of automatically count and classify microplastic particles in the range of 1-5 mm from pictures taken with a digital camera or a mobile phone with a resolution of 16 million pixels or higher.

36 citations


Cited by
More filters
Proceedings Article
27 Sep 2012
TL;DR: This paper inspects the potential of texture features based on Local Binary Patterns (LBP) and their variations on three types of attacks: printed photographs, and photos and videos displayed on electronic screens of different sizes and concludes that LBP show moderate discriminability when confronted with a wide set of attack types.
Abstract: Spoofing attacks are one of the security traits that biometric recognition systems are proven to be vulnerable to. When spoofed, a biometric recognition system is bypassed by presenting a copy of the biometric evidence of a valid user. Among all biometric modalities, spoofing a face recognition system is particularly easy to perform: all that is needed is a simple photograph of the user. In this paper, we address the problem of detecting face spoofing attacks. In particular, we inspect the potential of texture features based on Local Binary Patterns (LBP) and their variations on three types of attacks: printed photographs, and photos and videos displayed on electronic screens of different sizes. For this purpose, we introduce REPLAY-ATTACK, a novel publicly available face spoofing database which contains all the mentioned types of attacks. We conclude that LBP, with ∼15% Half Total Error Rate, show moderate discriminability when confronted with a wide set of attack types.

707 citations

01 Jan 2005
TL;DR: In this article, a general technique called Bubbles is proposed to assign the credit of human categorization performance to specific visual information, such as gender, expressive or not and identity.
Abstract: Everyday, people flexibly perform different categorizations of common faces, objects and scenes. Intuition and scattered evidence suggest that these categorizations require the use of different visual information from the input. However, there is no unifying method, based on the categorization performance of subjects, that can isolate the information used. To this end, we developed Bubbles, a general technique that can assign the credit of human categorization performance to specific visual information. To illustrate the technique, we applied Bubbles on three categorization tasks (gender, expressive or not and identity) on the same set of faces, with human and ideal observers to compare the features they used.

623 citations

Journal ArticleDOI
TL;DR: This paper introduces a novel and appealing approach for detecting face spoofing using a colour texture analysis that exploits the joint colour-texture information from the luminance and the chrominance channels by extracting complementary low-level feature descriptions from different colour spaces.
Abstract: Research on non-intrusive software-based face spoofing detection schemes has been mainly focused on the analysis of the luminance information of the face images, hence discarding the chroma component, which can be very useful for discriminating fake faces from genuine ones. This paper introduces a novel and appealing approach for detecting face spoofing using a colour texture analysis. We exploit the joint colour-texture information from the luminance and the chrominance channels by extracting complementary low-level feature descriptions from different colour spaces. More specifically, the feature histograms are computed over each image band separately. Extensive experiments on the three most challenging benchmark data sets, namely, the CASIA face anti-spoofing database, the replay-attack database, and the MSU mobile face spoof database, showed excellent results compared with the state of the art. More importantly, unlike most of the methods proposed in the literature, our proposed approach is able to achieve stable performance across all the three benchmark data sets. The promising results of our cross-database evaluation suggest that the facial colour texture representation is more stable in unknown conditions compared with its gray-scale counterparts.

449 citations

Journal ArticleDOI
TL;DR: A novel software-based fake detection method that can be used in multiple biometric systems to detect different types of fraudulent access attempts and the experimental results show that the proposed method is highly competitive compared with other state-of-the-art approaches.
Abstract: To ensure the actual presence of a real legitimate trait in contrast to a fake self-manufactured synthetic or reconstructed sample is a significant problem in biometric authentication, which requires the development of new and efficient protection measures. In this paper, we present a novel software-based fake detection method that can be used in multiple biometric systems to detect different types of fraudulent access attempts. The objective of the proposed system is to enhance the security of biometric recognition frameworks, by adding liveness assessment in a fast, user-friendly, and non-intrusive manner, through the use of image quality assessment. The proposed approach presents a very low degree of complexity, which makes it suitable for real-time applications, using 25 general image quality features extracted from one image (i.e., the same acquired for authentication purposes) to distinguish between legitimate and impostor samples. The experimental results, obtained on publicly available data sets of fingerprint, iris, and 2D face, show that the proposed method is highly competitive compared with other state-of-the-art approaches and that the analysis of the general image quality of real biometric samples reveals highly valuable information that may be very efficiently used to discriminate them from fake traits.

444 citations