scispace - formally typeset
Search or ask a question
Author

Javier Martínez

Bio: Javier Martínez is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Nanolithography & Silicon. The author has an hindex of 18, co-authored 24 publications receiving 1700 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the methods to generate the input variables and the risk integration developed within the Firemap project (funded under the Spanish Ministry of Science and Technology) to map wildland fire risk for several regions of Spain.

436 citations

Journal ArticleDOI
TL;DR: This tutorial review presents the most promising probe-based nanolithographies that are based on the spatial confinement of a chemical reaction within a nanometer-size region of the sample surface.
Abstract: The development of nanometer-scale lithographies is the focus of an intense research activity because progress on nanotechnology depends on the capability to fabricate, position and interconnect nanometer-scale structures. The unique imaging and manipulation properties of atomic force microscopes have prompted the emergence of several scanning probe-based nanolithographies. In this tutorial review we present the most promising probe-based nanolithographies that are based on the spatial confinement of a chemical reaction within a nanometer-size region of the sample surface. The potential of local chemical nanolithography in nanometer-scale science and technology is illustrated by describing a range of applications such as the fabrication of conjugated molecular wires, optical microlenses, complex quantum devices or tailored chemical surfaces for controlling biorecognition processes.

357 citations

Journal ArticleDOI
TL;DR: A new approach to mass sensing and stiffness spectroscopy is proposed based on the fact that the nanoresonator will enter a superposition state of two orthogonal vibrations with different frequencies when this symmetry is broken.
Abstract: A silicon nanowire vibrating in two dimensions can be used to measure the mass and stiffness of atoms and molecules deposited on it.

271 citations

Journal ArticleDOI
TL;DR: It is shown that taller plants have predictably wider water-conducting conduits, and that wider conduits within species are more vulnerable to conduction-blocking embolisms, suggesting that tall plants in formerly moist areas die because their wide conduits are excessively vulnerable under novel drought conditions.
Abstract: Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide.

238 citations

Journal ArticleDOI
26 Jul 2009
TL;DR: An atomic force microscopy lithography that enables the reproducible fabrication of complex single-crystalline silicon nanowire field-effect transistors with a high electrical performance is demonstrated.
Abstract: The emergence of an ultrasensitive sensor technology based on silicon nanowires requires both the fabrication of nanoscale diameter wires and the integration with microelectronic processes. Here we demonstrate an atomic force microscopy lithography that enables the reproducible fabrication of complex single-crystalline silicon nanowire field-effect transistors with a high electrical performance. The nanowires have been carved from a silicon-on-insulator wafer by a combination of local oxidation processes with a force microscope and etching steps. We have fabricated and measured the electrical properties of a silicon nanowire transistor with a channel width of 4 nm. The flexibility of the nanofabrication process is illustrated by showing the electrical performance of two nanowire circuits with different geometries. The fabrication method is compatible with standard Si CMOS processing technologies and, therefore, can be used to develop a wide range of architectures and new microelectronic devices.

117 citations


Cited by
More filters
Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of mountain bioclimatology and changes in mountain climates, and discuss the role of orography in the evolution of mountain climate.
Abstract: Prefaces Acknowledgements 1. Mountains and their climatological study 2. Geographical controls of mountain meteorological elements 3. Circulation systems related to orography 4. Climatic characteristics of mountains 5. Regional case studies 6. Mountain bioclimatology 7. Changes in mountain climates Appendix General index Author index.

847 citations

Journal ArticleDOI
TL;DR: A detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted.
Abstract: Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies.

789 citations

Journal ArticleDOI
TL;DR: Carbide-derived carbons (CDCs) as discussed by the authors are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical processes.
Abstract: Carbide-derived carbons (CDCs) are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical (e.g., halogenation) processes. Structurally, CDC ranges from amorphous carbon to graphite, carbon nanotubes or graphene. For halogenated carbides, a high level of control over the resulting amorphous porous carbon structure is possible by changing the synthesis conditions and carbide precursor. The large number of resulting carbon structures and their tunability enables a wide range of applications, from tribological coatings for ceramics, or selective sorbents, to gas and electrical energy storage. In particular, the application of CDC in supercapacitors has recently attracted much attention. This review paper summarizes key aspects of CDC synthesis, properties, and applications. It is shown that the CDC structure and properties are sensitive to changes of the synthesis parameters. Understanding of processing–structure–properties relationships facilitates tuning of the carbon material to the requirements of a certain application.

612 citations