scispace - formally typeset
Search or ask a question
Author

Jawaher Alkahtani

Bio: Jawaher Alkahtani is an academic researcher from King Saud University. The author has contributed to research in topics: Salinity & Medicine. The author has an hindex of 6, co-authored 47 publications receiving 148 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Tetraena mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.
Abstract: Tetraena mandavillei L. is a perennial shrub native to the Middle Eastern countries of Asia, which is extensively regarded as a drought-tolerant plant. However, the plant reduces growth and biomass when grown in high concentrations of sodium chloride in the soil. We conducted a pot experiment to influence the negative impact of different levels of salinity (0, 10, and 20 dSm-1 ) and drought stress (100, 80, 60, and 40% water field capacity), to study different growth-related parameters, physiological alterations and ion uptake by T. mandavillei. Both salinity and drought stress caused a negative impact by affecting several attributes of T. mandavillei, but the plants showed some resistance against drought stress conditions in terms of growth and biomass. In addition to that, we noticed that a combinatorial and individual impact of drought and salinity stress decreased photosynthetic pigments and gas exchange parameters in T. mandavillei. Results also depicted that the combination of the abiotic stress conditions drought and salinity induced reactive oxygen species (ROS), indicating that the plants undergo oxidative damaged. However, due to the active plant defense system, the plant enhanced its performance under abiotic stress conditions, but due to the severe drought condition (40% water field capacity), a significant (P < 0.05) decrease in the activities of antioxidant compounds was caused. Furthermore, osmolytes also increased under both salinity and drought stress conditions in this study. Our results also showed that increased salinity and drought stress in the soil caused a significant increase in sodium (Na+ ) and chloride (Cl- ) ions in roots and shoots of T. mandavillei. In contrast to that, the contents of Calcium (Ca2+ ) and potassium (K+ ) were decreased in all organs of the plants with increasing levels of salinity and drought stress. Taken together, T. mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.

60 citations

Journal ArticleDOI
28 Sep 2020
TL;DR: Investigation of the effect of MT as a foliar application on tomato plants grown in the open field under the long term of optimal and deficit irrigation conditions indicates that exogenous MT played an essential role in enhancing tomato tolerance to deficit irrigation and could be recommended as a promising agricultural treatment under such conditions.
Abstract: Melatonin "N-Acetyl-5-methoxytryptamine" (MT) has recently been considered as a new plant growth regulator with multiple physiological functions. Although many previous studies have confirmed that exogenous applied-MT can alleviate the deleterious effects of drought stress in many plant species, most of these studies were exclusive on seeds, seedlings, and young plants for a short period of their life cycles. Therefore, the knowledge of using MT as a potential promising agricultural foliar application to improve crop productivity and quality is still insufficient under adverse open field conditions. In this study, we investigated the effect of MT as a foliar application at 0, 20, and 40 ppm on tomato plants that were grown in the open field under the long term of optimal and deficit irrigation conditions. The results indicated that exogenous MT significantly enhanced plant growth, chlorophyll and activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POX). This improvement was associated with a marked reduction in proline and soluble sugars. In addition, applied-MT worked as a protective agent against oxidative damage by reducing the cellular content of toxic substances such as H2O2 and malondialdehyde (MDA). Similarly, MT-treated plants showed greater total fruit yield with improving its quality attributes like total soluble solids (TSS), ascorbic acid, and lycopene. Generally, the highest significant fruit yield either under well-watered (13.7%) or water deficit (37.4%) conditions was achieved by the treatment of 20 ppm MT. These results indicate that exogenous MT played an essential role in enhancing tomato tolerance to deficit irrigation and could be recommended as a promising agricultural treatment under such conditions.

55 citations

Journal ArticleDOI
TL;DR: In this article, the Abutilon indicum leaf extract was used to synthesize nanoparticles using co-precipitation method and the synthesized nanoparticles were successfully characterized using different spectroscopic techniques.
Abstract: Background NiO nanoparticles have attracted much attention due to their unique properties. They have been synthesized using chemical and physical techniques that often need toxic chemicals. These toxic chemicals cannot easily be removed from the nanoparticle’s surface, make them less biocompatible, and limit their biological applications. Instead, plants based green synthesis of nanoparticles uses phytomolecules as reducing and capping agents. These phytomolecules are biologically active with no or less toxic effects. Materials and Methods Phytomolecules-coated NiO nanoparticles were synthesized employing a green route using Abutilon indicum leaf extract. For comparative study, we also have synthesized NiO nanoparticles using the co-precipitation method. Synthesized nanoparticles were successfully characterized using different spectroscopic techniques. The synthesized nanoparticles were evaluated for antibacterial activity with agar well diffusion assay against different bacteria compared to standard drug and plant extract. They are also examined for anticancer potential using MTT assay against HeLa cancer cells, and further, their antioxidant potential was determined using DPPH assay. Biocompatibility of the synthesized nanoparticles was assessed against fibroblast cells. Results Phytomolecules-coated NiO nanoparticles were demonstrated superior antibacterial and anticancer performance against bacteria (E. coli, B. bronchiseptica, B. subtilis, and S. aureus) by presenting highest zone of inhibitions (18 ± 0.58 mm, 21 ± 0.45 mm, 22 ± 0.32 mm, and 23 ± 0.77 mm) and HeLa cancer cells by exhibiting the least cell viability percentage (51.74 ± 0.35%) compared to plant extract and chemically synthesized NiO nanoparticles but were comparable to standard antibiotic and anticancer drugs, respectively. Phytomolecules-coated NiO nanoparticles were also demonstrated excellent antioxidant activity (79.87 ± 0.43% DPPH inhibition) and biocompatibility (> 90% cell viability) with fibroblast cells. Conclusion Nanoparticle synthesis using the Abutilon indicum leaf extract is an efficient and economical method, produces biocompatible and more biologically active nanoparticles, which can be an excellent candidate for therapeutic applications.

33 citations

Journal ArticleDOI
26 Oct 2020
TL;DR: Soil potassium humate seed dressing and soil application at the rate of 200 mL kg−1 and 20 L ha−1, respectively, is a better approach to improve cotton productivity.
Abstract: Humus is the stable form of added crop and animal residues. The organic matter after a long-term decomposition process converts into humic substances. The naturally occurring humus is present in less amount in soils of the arid and semi-arid regions. The addition of commercially available humic acid can, therefore, contribute to improving soil health and crop yields. The present study was conducted to evaluate the effect of potassium humate, applied through soil seed dressing, on cotton productivity and fiber quality attributes. Seed dressing with potassium humate was done at the rate of 0, 100, 150 and 200 mL kg-1 seed while in soil potassium humate was applied at the rate of 0, 10, 20 and 30 L ha-1. Results showed that the combined application of potassium humate by seed dressing and through soil application improved the soil properties, productivity and fiber quality traits of cotton. All levels of soil applied potassium humate (10, 20 and 30 L ha-1) performed better over seed dressing in terms of cotton productivity and fiber quality attributes. Among the soil application rates, 20 L ha-1 potassium humate proved better as compared to other rates (0, 10 and 30 L ha-1). Higher soil application of potassium humate (30 L ha-1) showed depressing effects on all the traits studied like the reduction of 12.4% and 6.6% in Ginning out turn and fiber length, respectively, at a seeding dressing of 200 mL kg-1. In conclusion, potassium humate seed dressing and soil application at the rate of 200 mL kg-1 and 20 L ha-1, respectively, is a better approach to improve cotton productivity. Soil potassium humate should not exceed a rate of 20 L ha-1 when the seed dressing of potassium is also practiced.

31 citations

Journal ArticleDOI
TL;DR: In this paper , the effects of zinc oxide (ZnO) nanoparticles (NPs) on wheat variety “Gemmieza” imported from Egypt under salt stress were investigated.
Abstract: Nanotechnology has a wide range of applications. Nanotechnology refers to the particle in nanoscale used to improve agricultural productivity and to encounter the unsolved problems conventionally. Nanostructured formulation through mechanisms, such as targeted delivery or slow/controlled release mechanisms as well as conditional release, could release their active ingredients in response to the environmental conditions and biological demands more precisely. Nanotechnology has a great potential for achieving sustainable agriculture, especially in developing countries. Salinity is among the major abiotic stresses which limits the yield and quality of global crops. Zinc (Zn) is a vital micronutrient that is mandatory for the ideal growth of plants and has proved to reduce the hazardous effects of salt stress. To counter the salinity problem, a pot experiment was conducted at wire house of the Institute of Soil and Environmental Sciences (ISES), University of Agriculture, Faisalabad, Pakistan, to observe the effects of zinc oxide (ZnO) nanoparticles (NPs) on wheat variety “Gemmieza” imported from Egypt under salt stress. Notably, 10 dS m–1 salinity was developed artificially, and different doses of Zn conventional fertilizer and ZnO NPs were applied to potted wheat. ZnO NPs (0.12 g pot–1) significantly increased the physical parameters of wheat compared to control under salt stress. Application of ZnO NPs (0.12 g pot–1) significantly increased chlorophyll A and B contents by 24.6 and 10%, plant height at vegetative and maturity stages by 34.6 and 37.4%, shoot and spike lengths by 30.7 and 27.6%, root fresh and dry weights by 74.5 and 63.1%, and wheat grain yield by 42.2%, respectively. ZnO NPs performed better compared to Zn conventional fertilizer under salt stress and could be used in place of Zn conventional fertilizer in salt-affected soils for attaining better crop production.

27 citations


Cited by
More filters
01 Jan 1987
TL;DR: Eisma et al. as mentioned in this paper showed that the CEC can vary over 2 orders of magnitude for various types of, minerals and can vary one order of magnitude within one soil type.
Abstract: Positive ions that are available in soils absorb on grain surfaces. The total sum of cations that can be absorbed bij a soil/sediment at a certain PH is defined by the cation-exchange capacity (CEC, in meq g-1: mol equivalents per gram). The uptake of cations is an important parameter in agriculture and the larger the CEC, the more cations can be absorbed to the soil. The CEC depends highly on the pH of soil and sediments, where the CEC decreases with decreasing PH (increasing acidity). The exchange of ions on sediments occurs commonly fast on geological time scales, but the kinetics of adsorption in natural environments is still poorly understood. The strength of the bonding between the cations and the sediments varies from weak Van der Waals bondings (physical adsorption) to strong chemical bonds. The CEC is widely used for agricultural assessment because it is a measure of general soil fertility as well as an indicator of structural stability because CED is capabel of enhancing development of shrinkage cracks. The list below shows the CEC for different types of minerals. The data indicate that the CEC can vary over 2 orders of magnitude for various types of , minerals and can vary one order of magnitude within one soil type. Cation exchange capacity for different types of sediment (Eisma, 1992; Locher and de Bakker, 1990):

1,169 citations

01 Apr 1984
TL;DR: The effect of ozone was studied on the peroxidase activity from various compartments of Sedum album leaves (epidermis, intercellular fluid, residual cell material, and total cell material) and the greatest increase following a 2-hour ozone exposure was observed in extracellular per oxidases.
Abstract: The effect of ozone was studied on the peroxidase activity from various compartments of Sedum album leaves (epidermis, intercellular fluid, residual cell material, and total cell material). The greatest increase following a 2-hour ozone exposure (0.4 microliters O/sub 3/ per liter) was observed in extracellular peroxidases. Most of the main bands of peroxidase activity separated by isoelectric focusing exhibited an increase upon exposure to ozone. Incubation experiments with isolated peeled or unpeeled leaves showed that leaves from ozone-treated plants release much more peroxidases in the medium than untreated leaves. The withdrawal of Ca/sup 2 +/ ions reduced the level of extracellular peroxidase activity either in whole plants or in incubation experiments. This reduction and the activation obtained after addition of Ca/sup 2 +/ resulted from a direct requirment of Ca/sup 2 +/ by the enzyme and from an effect of Ca/sup 2 +/ on peroxidase secretion. The ionophore A23187 promoted an increase of extracellular peroxidase activity only in untreated plants. The release of peroxidases by untreated and ozone-treated leaves is considerably lowered by metabolic inhibitors (3-(3,4-dichlorophenyl)-1,1-dimethylurea and sodium azide) and by puromycin.

320 citations

10 Aug 1998

303 citations

Journal ArticleDOI

152 citations