scispace - formally typeset
Search or ask a question
Author

Jayakumar Balakrishnan

Bio: Jayakumar Balakrishnan is an academic researcher from Saveetha University. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 13, co-authored 25 publications receiving 8991 citations. Previous affiliations of Jayakumar Balakrishnan include Indian Institute of Technology Patna & National University of Singapore.

Papers
More filters
Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations

Journal ArticleDOI
TL;DR: It is shown that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.
Abstract: The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

449 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the controlled addition of small amounts of covalently bonded hydrogen atoms is sufficient to induce a colossal enhancement of the spin-orbit interaction by three orders of magnitude.
Abstract: Graphene may be set to revolutionize electronics, but its small spin–orbit coupling limits its potential in spintronics. It is now shown, however, that adding hydrogen atoms can greatly enhance the magnetic properties of graphene. This then enabled the observation of the spin Hall effect, essential for controlling spin currents. Graphene’s extremely small intrinsic spin–orbit (SO) interaction1 makes the realization of many interesting phenomena such as topological/quantum spin Hall states2,3 and the spin Hall effect4 (SHE) practically impossible. Recently, it was predicted1,5,6,7 that the introduction of adatoms in graphene would enhance the SO interaction by the conversion of sp2 to sp3 bonds. However, introducing adatoms and yet keeping graphene metallic, that is, without creating electronic (Anderson) localization8, is experimentally challenging. Here, we show that the controlled addition of small amounts of covalently bonded hydrogen atoms is sufficient to induce a colossal enhancement of the SO interaction by three orders of magnitude. This results in a SHE at zero external magnetic fields at room temperature, with non-local spin signals up to 100 Ω; orders of magnitude larger than in metals9. The non-local SHE is, further, directly confirmed by Larmor spin-precession measurements. From this and the length dependence of the non-local signal we extract a spin relaxation length of ∼1 μm, a spin relaxation time of ∼ 90 ps and a SO strength of 2.5 meV.

350 citations

Journal ArticleDOI
TL;DR: The spin-relaxation time τ(s) scales inversely with the mobility μ of BLG samples both at room temperature (RT) and at low temperature (LT), indicating the importance of D'yakonov-Perel' spin scattering in BLG.
Abstract: We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density, and temperature. The spin-relaxation time τ(s) scales inversely with the mobility μ of BLG samples both at room temperature (RT) and at low temperature (LT). This indicates the importance of D'yakonov-Perel' spin scattering in BLG. Spin-relaxation times of up to 2 ns at RT are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single-layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of D'yakonov-Perel' spin scattering in BLG. In comparison to SLG, significant changes in the carrier density dependence of τ(s) are observed as a function of temperature.

227 citations

Journal ArticleDOI
TL;DR: It is demonstrated that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples, making Cu-CVD graphene a promising material of choice for large scale spintronic applications.
Abstract: We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.

227 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations