scispace - formally typeset
Search or ask a question
Author

Jayanta Panda

Bio: Jayanta Panda is an academic researcher from Ames Research Center. The author has contributed to research in topics: Jet (fluid) & Mach number. The author has an hindex of 20, co-authored 74 publications receiving 2282 citations. Previous affiliations of Jayanta Panda include University of Toledo & Glenn Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, four different approaches are used to determine experimentally the sources of jet mixing noise: spectral and directional information measured by a single microphone in the far field, fine-scale turbulence, large turbulence structures of the jet flow, and a mirror microphone is used to measure the noise source distribution along the lengths of high speed jets.
Abstract: The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.

486 citations

Journal ArticleDOI
TL;DR: In this article, the air density fluctuations in the plumes of fully expanded, unheated free jets were investigated experimentally using a Rayleigh-scattering-based technique.
Abstract: The air density fluctuations in the plumes of fully expanded, unheated free jets were investigated experimentally using a Rayleigh-scattering-based technique. The point measuring technique used a continuous-wave laser, fibre-optic transmission and photon counting electronics. The radial and centreline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-photomultiplier-tube (PMT) technique was used. Cross-correlation between the two PMT signals significantly reduced the electronic shot noise contribution. The density fluctuation spectra were found to be remarkably similar for all Mach number jets. A detailed survey in fully expanded Mach 0.95, 1.4 and 1.8 jets further confirmed that the distribution of various Strouhal frequency fluctuations remained similar, except for a spatial stretching with increased Mach number. In spite of this similarity in flow fluctuations the noise sources in these three jets were found to be significantly different. Spark schlieren photographs and near-field microphone measurements confirmed that Mach wave radiation was present in the Mach 1.8 jet, and was absent in the Mach 0.95 jet. Direct correlation measurement between the flow density fluctuation (cause) and far-field sound pressure fluctuation (effect) shed further light on the sound generation process. For this purpose a microphone was kept fixed at a far-field point, mostly at a distance of 50 diameters and 30° to the flow direction, and the laser probe volume was moved from point to point in the flow. In the Mach 1.8 jet, where the convective velocity of Kelvin–Helmholtz instability waves exceeded the ambient sound speed, significant correlation was measured from the peripheral shear layer, while in the Mach 0.95 jet, where the instability waves had subsonic convective speed, no correlation could be measured. Although the same instability waves were present in both Mach 1.8 and 0.95 jets, the peripheral shear layer of the former was found to be an obvious noise source, while that of the latter was not. Further correlation studies along the jet centreline showed that behaviour in the region downstream of the potential core was similar in all Mach number jets tested, 0:6[les ]M[les ]1:8. Good correlation at low Strouhal frequencies was measured from this region, which started from downstream of the potential core and extended many diameters from there.

216 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the screech noise generation process from supersonic underexpanded jets, issuing from a sonic nozzle at pressure ratios of 2.4 and 3.3 (fully expanded Mach number, Mj = 1.19 and 1.42).
Abstract: The screech noise generation process from supersonic underexpanded jets, issuing from a sonic nozzle at pressure ratios of 2.4 and 3.3 (fully expanded Mach number, Mj = 1.19 and 1.42), was investigated experimentally. The extremely detailed data provide a fresh, new look at the screech generation mechanism. Spark schlieren visualization at different phases of the screech cycle clearly shows the convection of the organized turbulent structures over a train of shock waves. The potential pressure field (hydrodynamic fluctuations) associated with the organized structures is fairly intense and extends outside the shear layer. The time evolution of the near-field pressure fluctuations was obtained from phase-averaged microphone measurements. Phase-matched combined views of schlieren photographs and pressure fluctuations show the sound generation process. The individual compression and rarefaction parts of the sound waves are found to be generated from similar hydrodynamic fluctuations. A partial interference between the upstream-propagating sound waves and the downstream-propagating hydrodynamic waves is found to be present along the jet boundary. The partial interference manifests itself as a standing wave in the root-mean-square pressure fluctuation data. The standing wavelength is found to be close to, but somewhat different from, the shock spacing. An outcome of the interference is a curious 'pause and go' motion of the sound waves along the jet periphery. Interestingly, a length scale identical to the standing wavelength is found to be present inside the jet shear layer. The coherent fluctuations and the convective velocity of the organized vortices are found to be modulated periodically, and the periodicity is found to match with the standing wavelength distance rather than the shock spacing. The reason for the appearance of this additional length scale, different from the shock spacing, could not be explained. Nevertheless, it is demonstrated that an exact screech frequency formula can be derived from the simple standing wave relationship. The exact relationship shows that the correct spacing between the sources, for a point source model similar to that of Powell (1953), should be a standing wavelength (not the shock spacing).

188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used smoke visualization, hot-wire anemometry and acoustic excitation to study the dynamics of a swirling jet in the Reynolds number range from 20,000 to 60,000 and a nominal swirl number of 05.
Abstract: Instabilities present in a swirling jet in the Reynolds number range from 20 000 to 60 000 and a nominal swirl number of 05 were studied experimentally, using smoke visualization, hot‐wire anemometry and acoustic excitation Flow visualization photographs of the natural jet show vortex breakdown at the core and rolling up of the shear layer around the jet into weak, irregular, large‐scale organized structures When forced by acoustic excitation these structures became energetic and periodic Axisymmetric and helical instability waves in the Strouhal number range 075 to 15 were excited and their evolution along the axial direction were measured from velocity spectra and ensemble averaged measurements Compared to a nonswirling jet, the overall growth of the instability waves is considerably smaller, and vortex pairing is suppressed in a swirling jet However, the overall spread and mass entrainment rates are higher in the latter Measurements of the mean velocity components and turbulence fluctuations show that the vortex breakdown affects the axial velocity distribution and rapidly replaces the potential core with a large amount of turbulence Upon interacting with the vortex breakdown, the shear layer along the jet periphery loses its organized structure and, in general, ‘‘random turbulence’’ follows

178 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the correlation between turbulent fluctuations along the lip shear layer of a high-speed jet and its potential core and found that the strongest noise source lies downstream of the end of the potential core.
Abstract: To locate noise sources in high-speed jets, the far-field sound pressure fluctuations microphone showed weaker values. By moving the laser probe to various locations in the jet, it was found that the strongest noise source lay downstream of the end of the potential core and extended many diameters beyond. Correlation measurements from turbulent fluctuations along the lip shear layer showed a Mach-number dependency: significant values were measured in supersonic jets, while correlations fell below the noise floor for subsonic jets. Various additional analyses showed that fluctuations from large coherent structures mostly contributed to the measured correlation, while that from small-scale structures fell below the noise floor.

149 citations


Cited by
More filters
Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the advances made over the past two decades in this area is provided in this article, where various swirl injector configurations and related flow characteristics, including vortex breakdown, precessing vortex core, large-scale coherent structures, and liquid fuel atomization and spray formation are discussed.

1,048 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review evidence of the existence, energetics, dynamics, and acoustic efficiency of wave packets and highlight how extensive data available from simulations and modern measurement techniques can be used to distill acoustically relevant turbulent motions.
Abstract: Turbulent jet noise is a controversial fluid mechanical puzzle that has amused and bewildered researchers for more than half a century. Whereas numerical simulations are now capable of simultaneously predicting turbulence and its radiated sound, the theoretical framework that would guide noise-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over distances far exceeding the integral scales of turbulence. Their signatures are readily distinguished in the vortical, turbulent region; the irrotational, evanescent near field; and the propagating far field. We review evidence of the existence, energetics, dynamics, and acoustic efficiency of wave packets. We highlight how extensive data available from simulations and modern measurement techniques can be used to distill acoustically relevant turbulent motions. The evidence supports theories that seek to represent wave packets as instability waves, or more general modal solutions of the governing equations, and confirms the acoustic importance of these structures in the aft-angle radiation of high subsonic and supersonic jets. The resulting unified view of wave packets provides insights that can help guide control strategies.

517 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral properties of Rayleigh scattering are discussed and a review of the new advances in flow field imaging that have been achieved using the new filter approaches is presented.
Abstract: Rayleigh scattering is a powerful diagnostic tool for the study of gases and is particularly useful for aiding in the understanding of complex flow fields and combustion phenomena. Although the mechanism associated with the scattering, induced electric dipole radiation, is conceptually straightforward, the features of the scattering are complex because of the anisotropy of molecules, collective scattering from many molecules and inelastic scattering associated with rotational and vibrational transitions. These effects cause the scattered signal to be depolarized and to have spectral features that reflect the pressure, temperature and internal energy states of the gas. The very small scattering cross section makes molecular Rayleigh scattering particularly susceptible to background interference. Scattering from very small particles also falls into the Rayleigh range and may dominate the scattering from molecules if the particle density is high. This particle scattering can be used to enhance flow visualization and velocity measurements, or it may be removed by spectral filtering. New approaches to spectral filtering are now being applied to both Rayleigh molecular scattering and Rayleigh particle scattering to extract quantitative information about complex gas flow fields. This paper outlines the classical properties of Rayleigh scattering and reviews some of the new advances in flow field imaging that have been achieved using the new filter approaches.

508 citations

Journal ArticleDOI
TL;DR: In this article, four different approaches are used to determine experimentally the sources of jet mixing noise: spectral and directional information measured by a single microphone in the far field, fine-scale turbulence, large turbulence structures of the jet flow, and a mirror microphone is used to measure the noise source distribution along the lengths of high speed jets.
Abstract: The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.

486 citations