scispace - formally typeset
Search or ask a question
Author

Je Hyeong Jung

Bio: Je Hyeong Jung is an academic researcher from University of Florida. The author has contributed to research in topics: Lignocellulosic biomass & Medicine. The author has an hindex of 8, co-authored 12 publications receiving 565 citations. Previous affiliations of Je Hyeong Jung include Korea University & Korea Institute of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that a moderate reduction in lignin can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions.
Abstract: Sugarcane is a prime bioethanol feedstock. Currently, sugarcane ethanol is produced through fermentation of the sucrose, which can easily be extracted from stem internodes. Processes for production of biofuels from the abundant lignocellulosic sugarcane residues will boost the ethanol output from sugarcane per land area. However, unlocking the vast amount of chemical energy stored in plant cell walls remains expensive primarily because of the intrinsic recalcitrance of lignocellulosic biomass. We report here the successful reduction in lignification in sugarcane by RNA interference, despite the complex and highly polyploid genome of this interspecific hybrid. Down-regulation of the sugarcane caffeic acid O-methyltransferase (COMT) gene by 67% to 97% reduced the lignin content by 3.9% to 13.7%, respectively. The syringyl/guaiacyl ratio in the lignin was reduced from 1.47 in the wild type to values ranging between 1.27 and 0.79. The yields of directly fermentable glucose from lignocellulosic biomass increased up to 29% without pretreatment. After dilute acid pretreatment, the fermentable glucose yield increased up to 34%. These observations demonstrate that a moderate reduction in lignin (3.9% to 8.4%) can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions.

152 citations

Journal ArticleDOI
TL;DR: These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.
Abstract: Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.

137 citations

Journal ArticleDOI
TL;DR: The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes.
Abstract: Sugarcane (Saccharum spp. hybrids) is a prime crop for commercial biofuel production. Advanced conversion technology utilizes both, sucrose accumulating in sugarcane stems as well as cell wall bound sugars for commercial ethanol production. Reduction of lignin content significantly improves the conversion of lignocellulosic biomass into ethanol. Conventional mutagenesis is not expected to confer reduction in lignin content in sugarcane due to its high polyploidy (x = 10-13) and functional redundancy among homo(eo)logs. Here we deploy transcription activator-like effector nuclease (TALEN) to induce mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane. Capillary electrophoresis (CE) was validated by pyrosequencing as reliable and inexpensive high throughput method for identification and quantitative characterization of TALEN mediated mutations. Targeted COMT mutations were identified by CE in up to 74 % of the lines. In different events 8-99 % of the wild type COMT were converted to mutant COMT as revealed by pyrosequencing. Mutation frequencies among mutant lines were positively correlated to lignin reduction. Events with a mutation frequency of 99 % displayed a 29-32 % reduction of the lignin content compared to non-transgenic controls along with significantly reduced S subunit content and elevated hemicellulose content. CE analysis displayed similar peak patterns between primary COMT mutants and their vegetative progenies suggesting that TALEN mediated mutations were faithfully transmitted to vegetative progenies. This is the first report on genome editing in sugarcane. The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes.

127 citations

Journal ArticleDOI
TL;DR: Reducing the recalcitrance of lignocellulosic biomass to saccharification by modifying lignin biosynthesis is expected to greatly benefit the economic competitiveness of sugarcane as a biofuel feedstock.
Abstract: The agronomic performance, cell wall characteristics and enzymatic saccharification efficiency of transgenic sugarcane plants with modified lignin were evaluated under replicated field conditions. Caffeic acid O-methyltransferase (COMT) was stably suppressed by RNAi in the field, resulting in transcript reduction of 80%-91%. Along with COMT suppression, total lignin content was reduced by 6%-12% in different transgenic lines. Suppression of COMT also altered lignin composition by reducing syringyl units and p-coumarate incorporation into lignin. Reduction in total lignin by 6% improved saccharification efficiency by 19%-23% with no significant difference in biomass yield, plant height, stalk diameter, tiller number, total structural carbohydrates or brix value when compared with nontransgenic tissue culture-derived or transgenic control plants. Lignin reduction of 8%-12% compromised biomass yield, but increased saccharification efficiency by 28%-32% compared with control plants. Biomass from transgenic sugarcane lines that have 6%-12% less lignin requires approximately one-third of the hydrolysis time or 3- to 4-fold less enzyme to release an equal or greater amount of fermentable sugar than nontransgenic plants. Reducing the recalcitrance of lignocellulosic biomass to saccharification by modifying lignin biosynthesis is expected to greatly benefit the economic competitiveness of sugarcane as a biofuel feedstock.

107 citations

Journal ArticleDOI
TL;DR: These findings confirm the feasibility of co‐mutagenesis of a very large number of target alleles/copies for improvement in crops with complex genomes.
Abstract: Summary Sugarcane is the world's most efficient feedstock for commercial production of bioethanol due to its superior biomass production and accumulation of sucrose in stems. Integrating first and second generation ethanol conversion processes will enhance the biofuel yield per unit area by utilizing both sucrose as well as cell wall bound sugars for fermentation. RNAi suppression of the lignin biosynthetic gene caffeic acid O-methyltransferase (COMT) has been demonstrated to improve bioethanol production from lignocellulosic biomass. Genome editing has been used in a number of crops for creation of loss of function phenotypes but is very challenging in sugarcane due to its highly polyploid genome. In this study, a conserved region of COMT was targeted with a single Transcription Activator-Like Effector Nuclease (TALEN) pair for multi-allelic mutagenesis to modify lignin biosynthesis in sugarcane. Field grown TALEN mediated COMT mutants showed up to 19.7% lignin reduction and significantly decreased syringyl to guaiacyl (S/G) ratio resulting in an up to 43.8% improved saccharification efficiency. Biomass production of COMT mutant lines with superior saccharification efficiency did not differ significantly from the original cultivar under replicated field conditions. Sanger sequencing of cloned COMT amplicons (1351-1657 bp) revealed co-editing of 107 of the 109 unique COMT copies/alleles in vegetative progeny of line CB6 using a single TALEN pair. Line CB6 combined altered cell wall composition and drastically improved saccharification efficiency with good agronomic performance. These findings confirm the feasibility of co-mutagenesis of a very large number of target alleles/copies for improvement of crops with complex genomes. This article is protected by copyright. All rights reserved.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Abstract: Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.

1,390 citations

05 Mar 2001
TL;DR: It is indicated that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.
Abstract: Because lignin limits the use of wood for fiber, chemical, and energy production, strategies for its downregulation are of considerable interest. We have produced transgenic aspen (Populus tremuloides Michx.) trees in which expression of a lignin biosynthetic pathway gene Pt4CL1 encoding 4-coumarate:coenzyme A ligase (4CL) has been downregulated by antisense inhibition. Trees with suppressed Pt4CL1 expression exhibited up to a 45% reduction of lignin, but this was compensated for by a 15% increase in cellulose. As a result, the total lignin–cellulose mass remained essentially unchanged. Leaf, root, and stem growth were substantially enhanced, and structural integrity was maintained both at the cellular and whole-plant levels in the transgenic lines. Our results indicate that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.

717 citations

Journal ArticleDOI
TL;DR: The current applications of genome editing in plants are described, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use, and novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization are reviewed.
Abstract: Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism’s genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.

258 citations

Journal ArticleDOI
TL;DR: Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content.
Abstract: Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement.

239 citations

Journal ArticleDOI
TL;DR: The potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed, and three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass are discussed.
Abstract: With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops-maize, sugarcane and sorghum-and two undomesticated perennial energy grasses-miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel.

208 citations