scispace - formally typeset
Search or ask a question
Author

Jean-Christophe Calvet

Bio: Jean-Christophe Calvet is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Water content & Data assimilation. The author has an hindex of 57, co-authored 220 publications receiving 10678 citations. Previous affiliations of Jean-Christophe Calvet include Institut national de la recherche agronomique & Jet Propulsion Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed description of soil and vegetation modelling in L-MEB is given in order to address these needs, and the use of LMEB in soil moisture retrievals is evaluated for several experimental data sets over agricultural crops.

604 citations

Journal ArticleDOI
TL;DR: SURFEX as mentioned in this paper is an externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean.
Abstract: . SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

573 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent progress made with retrieving surface soil moisture from three types of microwave sensors -radiometers, Synthetic Aperture Radars (SARs), and scatterometers.
Abstract: Microwave remote sensing of soil moisture has been an active area of research since the 1970s but has yet found little use in operational applications Given recent advances in retrieval algorithms and the approval of a dedicated soil moisture satellite, it is time to re-assess the potential of various satellite systems to provide soil moisture information for hydrologic applications in an operational fashion This paper reviews recent progress made with retrieving surface soil moisture from three types of microwave sensors - radiometers, Synthetic Aperture Radars (SARs), and scatterometers The discussion focuses on the operational readiness of the different techniques, considering requirements that are typical for hydrological applications It is concluded that operational coarse-resolution (25-50 km) soil moisture products can be expected within the next few years from radiometer and scatterometer systems, while scientific and technological breakthroughs are still needed for operational soil moisture retrieval at finer scales (< 1 km) from SAR Also, further research on data assimilation methods is needed to make best use of the coarse-resolution surface soil moisture data provided by radiometer and scatterometer systems in a hydrologic context and to fully assess the value of these data for hydrological predictions

466 citations

Journal ArticleDOI
TL;DR: The Level 2 Passive Soil Moisture Product (L2_SM_P) as discussed by the authors was developed by the National Aeronautics and Space Administration (NASA) soil moisture active passive (SMAP) satellite mission and is available from the Distributed Active Archive Center at the National Snow and Ice Data Center.
Abstract: The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 km Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 m3/m3 unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 m3/m3.

426 citations

Journal ArticleDOI
TL;DR: In this article, a recursive exponential filter equation using a time constant, T, is used to compute a soil water index, and the Nash and Sutcliff coefficient is used as a criterion to optimize the T parameter for each ground station and for each model pixel of the synthetic data set.
Abstract: . A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

411 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors address and document a number of issues related to the implementation of an advanced land surface-hydrology model in the Penn State-NCAR fifth-generation Mesoscale Model (MM5).
Abstract: This paper addresses and documents a number of issues related to the implementation of an advanced land surface–hydrology model in the Penn State–NCAR fifth-generation Mesoscale Model (MM5). The concept adopted here is that the land surface model should be able to provide not only reasonable diurnal variations of surface heat fluxes as surface boundary conditions for coupled models, but also correct seasonal evolutions of soil moisture in the context of a long-term data assimilation system. In a similar way to that in which the modified Oregon State University land surface model (LSM) has been used in the NCEP global and regional forecast models, it is implemented in MM5 to facilitate the initialization of soil moisture. Also, 1-km resolution vegetation and soil texture maps are introduced in the coupled MM5–LSM system to help identify vegetation/water/soil characteristics at fine scales and capture the feedback of these land surface forcings. A monthly varying climatological 0.15° × 0.15° green ...

4,405 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: An overview of the GMES Sentinel-2 mission including a technical system concept overview, image quality, Level 1 data processing and operational applications is provided.

2,517 citations