scispace - formally typeset
Search or ask a question
Author

Jean Clobert

Bio: Jean Clobert is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Population & Biological dispersal. The author has an hindex of 83, co-authored 244 publications receiving 30602 citations. Previous affiliations of Jean Clobert include Pierre-and-Marie-Curie University & Paul Sabatier University.


Papers
More filters
Journal ArticleDOI
TL;DR: A recent survey of capture-recapture models can be found in this article, with an emphasis on flexibility in modeling, model selection, and the analysis of multiple data sets.
Abstract: The understanding of the dynamics of animal populations and of related ecological and evolutionary issues frequently depends on a direct analysis of life history parameters. For instance, examination of trade-offs between reproduction and survival usually rely on individually marked animals, for which the exact time of death is most often unknown, because marked individuals cannot be followed closely through time. Thus, the quantitative analysis of survival studies and experiments must be based on capture- recapture (or resighting) models which consider, besides the parameters of primary interest, recapture or resighting rates that are nuisance parameters. Capture-recapture models oriented to estimation of survival rates are the result of a recent change in emphasis from earlier approaches in which population size was the most important parameter, survival rates having been first introduced as nuisance parameters. This emphasis on survival rates in capture-recapture models developed rapidly in the 1980s and used as a basic structure the Cormack-Jolly-Seber survival model applied to an homogeneous group of animals, with various kinds of constraints on the model parameters. These approaches are conditional on first captures; hence they do not attempt to model the initial capture of unmarked animals as functions of population abundance in addition to survival and capture probabilities. This paper synthesizes, using a common framework, these recent developments together with new ones, with an emphasis on flexibility in modeling, model selection, and the analysis of multiple data sets. The effects on survival and capture rates of time, age, and categorical variables characterizing the individuals (e.g., sex) can be considered, as well as interactions between such effects. This "analysis of variance" philosophy emphasizes the structure of the survival and capture process rather than the technical characteristics of any particular model. The flexible array of models encompassed in this synthesis uses a common notation. As a result of the great level of flexibility and relevance achieved, the focus is changed from fitting a particular model to model building and model selection. The following procedure is recommended: (1) start from a global model compatible with the biology of the species studied and with the design of the study, and assess its fit; (2) select a more parsimonious model using Akaike's Information Criterion to limit the number of formal tests; (3) test for the most important biological questions by comparing this model with neighboring ones using likelihood ratio tests; and (4) obtain maximum likelihood estimates of model parameters with estimates of precision. Computer software is critical, as few of the models now available have parameter estimators that are in closed form. A comprehensive table of existing computer software is provided. We used RELEASE for data summary and goodness-of-fit tests and SURGE for iterative model fitting and the computation of likelihood ratio tests. Five increasingly complex examples are given to illustrate the theory. The first, using two data sets on the European Dipper (Cinclus cinclus), tests for sex-specific parameters,

4,038 citations

01 Jan 2010
TL;DR: This paper synthesizes, using a common framework, recent developments of capture-recapture models oriented to estimation of survival rates together with new ones, with an emphasis on flexibility in modeling, model selection, and the analysis of multiple data sets.

4,011 citations

Journal ArticleDOI
TL;DR: An analysis of global forest cover is conducted to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation, indicating an urgent need for conservation and restoration measures to improve landscape connectivity.
Abstract: We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 year sd emonstrates that habitatfragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

2,201 citations

Journal ArticleDOI
14 May 2010-Science
TL;DR: Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.
Abstract: It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites Since 1975, 12% of local populations have gone extinct We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20% Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change

1,483 citations

Journal ArticleDOI
TL;DR: Recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation is discussed.
Abstract: There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation.

1,061 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Mark as discussed by the authors provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings.
Abstract: MARK provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings. The time intervals between re-encounters do not have to be equal. More than one attribute group of animals can be modelled. The basic input to MARK is the encounter history for each animal. MARK can also estimate the size of closed populations. Parameters can be constrained to be the same across re-encounter occasions, or by age, or group, using the parameter index matrix. A set of common models for initial screening of data are provided. Time effects, group effects, time x group effects and a null model of none of the above, are provided for each parameter. Besides the logit function to link the design matrix to the parameters of the model, other link functions include the log—log, complimentary log—log, sine, log, and identity. The estimates of model parameters are computed via numerical maximum likelihood techniques. The number of parameters that are...

7,128 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations