scispace - formally typeset
Search or ask a question
Author

Jean Donea

Bio: Jean Donea is an academic researcher from University of Liège. The author has contributed to research in topics: Finite element method & Convection–diffusion equation. The author has an hindex of 12, co-authored 17 publications receiving 2740 citations.

Papers
More filters
Book
02 Jun 2003
TL;DR: An introduction to monotonicity-preserving schemes and other stabilization techniques and new trends in fluid dynamics, and main issues in incompressible flow problems.
Abstract: Preface. 1. Introduction and preliminaries. Finite elements in fluid dynamics. Subjects covered. Kinematical descriptions of the flow field. The basic conservation equations. Basic ingredients of the finite element method. 2. Steady transport problems. Problem statement. Galerkin approximation. Early Petrov-Galerkin methods. Stabilization techniques. Other stabilization techniques and new trends. Applications and solved exercises. 3. Unsteady convective transport. Introduction. Problem statement. The methods of characteristics. Classical time and space discretization techniques. Stability and accuracy analysis. Taylor-Galerkin Methods. An introduction to monotonicity-preserving schemes. Least-squares-based spatial discretization. The discontinuous Galerkin method. Space-time formulations. Applications and solved exercises. 4. Compressible Flow Problems. Introduction. Nonlinear hyperbolic equations. The Euler equations. Spatial discretization techniques. Numerical treatment of shocks. Nearly incompressible flows. Fluid-structure interaction. Solved exercises. 5. Unsteady convection-diffusion problems. Introduction. Problem statement. Time discretization procedures. Spatial discretization procedures. Stabilized space-time formulations. Solved exercises. 6. Viscous incompressible flows. Introduction Basic concepts. Main issues in incompressible flow problems. Trial solutions and weighting functions. Stationary Stokes problem. Steady Navier-Stokes problem. Unsteady Navier-Stokes equations. Applications and Solved Exercices. References. Index.

1,035 citations

Reference EntryDOI
15 Nov 2004
TL;DR: In this paper, the authors provide an in-depth survey of arbitrary Lagrangian-Eulerian (ALE) methods, including both conceptual aspects of the mixed kinematical description and numerical implementation details.
Abstract: The aim of the present chapter is to provide an in-depth survey of arbitrary Lagrangian–Eulerian (ALE) methods, including both conceptual aspects of the mixed kinematical description and numerical implementation details. Applications are discussed in fluid dynamics, nonlinear solid mechanics and coupled problems describing fluid–structure interaction. The need for an adequate mesh-update strategy is underlined, and various automatic mesh-displacement prescription algorithms are reviewed. This includes mesh-regularization methods essentially based on geometrical concepts, as well as mesh-adaptation techniques aimed at optimizing the computational mesh according to some error indicator. Emphasis is then placed on particular issues related to the modeling of compressible and incompressible flow and nonlinear solid mechanics problems. This includes the treatment of convective terms in the conservation equations for mass, momentum, and energy, as well as a discussion of stress-update procedures for materials with history-dependent constitutive behavior. Keywords: ALE description; convective transport; finite elements; stabilization techniques; mesh regularization and adaptation; fluid dynamics; nonlinear solid mechanics; stress-update procedures; fluid–structure interaction

901 citations

Journal ArticleDOI
TL;DR: In this article, vortex-induced oscillations of a rigid body in viscous incompressible flow are studied and a new formulation for two-dimensional fluid-rigid body interaction problems is developed.

107 citations

11 Jul 2018
TL;DR: Pade approximations of the exponential function are considered for deriving multi-stage time integration schemes involving first time derivatives only, thus easier to implement in conjunction with C0 finite elements than standard time-stepping schemes which incorporate higher-order time derivatives.
Abstract: The paper discusses the formulation of high-order accurate time-stepping schemes for transient convection–diffusion problems to be combined with finite element methods of the least-squares type for a stable discretization of highly convective problems. Pade approximations of the exponential function are considered for deriving multi-stage time integration schemes involving first time derivatives only, thus easier to implement in conjunction with C0 finite elements than standard time-stepping schemes which incorporate higher-order time derivatives. After a brief discussion of the stability and accuracy properties of the multi-stage Pade schemes and having underlined the similarity between Pade and Runge–Kutta methods, the paper closes with the presentation of illustrative examples which indicate the effectiveness of the proposed methods.

60 citations


Cited by
More filters
Book
24 Feb 2012
TL;DR: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software.
Abstract: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Followingare chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

2,372 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented in this article, which enables accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements.
Abstract: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented. This method enables the accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements. This is achieved by enriching the polynomial approximation space of the classical finite element method. The GEFM/XFEM has shown its potential in a variety of applications that involve non-smooth solutions near interfaces: Among them are the simulation of cracks, shear bands, dislocations, solidification, and multi-field problems. Copyright © 2010 John Wiley & Sons, Ltd.

1,228 citations

Reference EntryDOI
15 Nov 2004
TL;DR: In this paper, the authors provide an in-depth survey of arbitrary Lagrangian-Eulerian (ALE) methods, including both conceptual aspects of the mixed kinematical description and numerical implementation details.
Abstract: The aim of the present chapter is to provide an in-depth survey of arbitrary Lagrangian–Eulerian (ALE) methods, including both conceptual aspects of the mixed kinematical description and numerical implementation details. Applications are discussed in fluid dynamics, nonlinear solid mechanics and coupled problems describing fluid–structure interaction. The need for an adequate mesh-update strategy is underlined, and various automatic mesh-displacement prescription algorithms are reviewed. This includes mesh-regularization methods essentially based on geometrical concepts, as well as mesh-adaptation techniques aimed at optimizing the computational mesh according to some error indicator. Emphasis is then placed on particular issues related to the modeling of compressible and incompressible flow and nonlinear solid mechanics problems. This includes the treatment of convective terms in the conservation equations for mass, momentum, and energy, as well as a discussion of stress-update procedures for materials with history-dependent constitutive behavior. Keywords: ALE description; convective transport; finite elements; stabilization techniques; mesh regularization and adaptation; fluid dynamics; nonlinear solid mechanics; stress-update procedures; fluid–structure interaction

901 citations

Journal ArticleDOI
TL;DR: The particle finite element method (PFEM) as mentioned in this paper is a general formulation for the analysis of fluid-structure interaction problems using the Lagrangian description to model the motion of nodes (particles) in both the fluid and the structure domains.
Abstract: We present a general formulation for the analysis of fluid-structure interaction problems using the particle finite element method (PFEM). The key feature of the PFEM is the use of a Lagrangian description to model the motion of nodes (particles) in both the fluid and the structure domains. Nodes are thus viewed as particles which can freely move and even separate from the main analysis domain representing, for instance, the effect of water drops. A mesh connects the nodes defining the discretized domain where the governing equations, expressed in an integral form, are solved as in the standard FEM. The necessary stabilization for dealing with the incompressibility condition in the fluid is introduced via the finite calculus (FIC) method. A fractional step scheme for the transient coupled fluid-structure solution is described. Examples of application of the PFEM method to solve a number of fluid-structure interaction problems involving large motions of the free surface and splashing of waves are presented.

461 citations