scispace - formally typeset
Search or ask a question
Author

Jean E. Schwarzbauer

Bio: Jean E. Schwarzbauer is an academic researcher from Princeton University. The author has contributed to research in topics: Fibronectin & Extracellular matrix. The author has an hindex of 58, co-authored 149 publications receiving 11529 citations. Previous affiliations of Jean E. Schwarzbauer include Massachusetts Institute of Technology & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: How the extracellular matrix changes during the stages of tissue repair, how matricellular proteins affect cell-extracllular matrix interactions, and how these proteins might be exploited for use therapeutically are discussed.

867 citations

Journal ArticleDOI
TL;DR: The major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix are described while highlighting important issues and major questions that require further investigation.
Abstract: In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5β1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation.

796 citations

Journal ArticleDOI
TL;DR: In this review, the main steps of fibronectin assembly are described and recent studies on fibronECTin conformational changes are discussed.

792 citations

Journal ArticleDOI
01 Dec 1983-Cell
TL;DR: There are at least three different fibronectin mRNAs in rat liver which differ in coding potential and are probably all encoded by a single gene, according to the sequence data and S1 nuclease mapping.

659 citations

Journal ArticleDOI
TL;DR: Assembly of native functional ECM depends on exquisite coordination between extracellular events and intracellular pathways that are essential for FN–integrin interactions and propagation of FN fibril formation.
Abstract: Cell phenotype is specified by environmental cues embedded in the architecture and composition of the extracellular matrix (ECM). Much has been learned about matrix organization and assembly through analyses of the ECM protein fibronectin (FN). FN matrix assembly is a cell-mediated process in which soluble dimeric FN is converted into a fibrillar network. Binding of cell surface integrin receptors to FN converts it to an active form, which promotes fibril formation through interactions with other cell-associated FN dimers. As FN fibrils form on the outside of the cell, cytoplasmic domains of integrin receptors organize cytoplasmic proteins into functional complexes inside. Intracellular connections to the actin cytoskeletal network and stimulation of certain key intracellular signaling pathways are essential for FN-integrin interactions and propagation of FN fibril formation. Thus, assembly of native functional ECM depends on exquisite coordination between extracellular events and intracellular pathways.

507 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The extracellular matrix is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue development.
Abstract: ![Figure][1] The extracellular matrix (ECM) is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue

3,190 citations

Journal ArticleDOI
TL;DR: It is discovered that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion, including morphogenesis, the immune response, and wound healing.

3,189 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

2,443 citations