scispace - formally typeset
Search or ask a question
Author

Jean-François Allienne

Bio: Jean-François Allienne is an academic researcher from IFREMER. The author has contributed to research in topics: Schistosoma haematobium & Schistosoma. The author has an hindex of 19, co-authored 57 publications receiving 1256 citations. Previous affiliations of Jean-François Allienne include University of Montpellier & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The molecular data suggest that the parasites were imported into Corsica by individuals infected in west Africa, specifically Senegal, and hybridisation between S haematobium and the cattle schistosome S bovis had a putative role in this outbreak.
Abstract: Summary Background Schistosomiasis is a snail-borne parasitic disease endemic in several tropical and subtropical countries. However, in the summer of 2013, an unexpected outbreak of urogenital schistosomiasis occurred in Corsica, with more than 120 local people or tourists infected. We used a multidisciplinary approach to investigate the epidemiology of urogenital schistosomiasis in Corsica, aiming to elucidate the origin of the outbreak. Methods We did parasitological and malacological surveys at nine potential sites of infection. With the snails found, we carried out snail–parasite compatibility experiments by exposing snails to schistosome larvae recovered from the urine of a locally infected Corsican patient. Genetic analysis of both mitochondrial ( cox1 ) and nuclear (internal transcribed spacer) DNA data from the Schistosoma eggs or miracidia recovered from the infected patients was conducted to elucidate the epidemiology of this outbreak. Findings We identified two main infection foci along the Cavu River, with many Bulinus truncatus snails found in both locations. Of the 3544 snails recovered across all sites, none were naturally infected, but laboratory-based experimental infections confirmed their compatibility with the schistosomes isolated from patients. Molecular characterisation of 73 eggs or miracidia isolated from 12 patients showed infection with Schistosoma haematobium, S haematobium–Schistosoma bovis hybrids, and S bovis . Further sequence data analysis also showed that the Corsican schistosomes were closely related to those from Senegal in west Africa. Interpretation The freshwater swimming pools of the Cavu River harbour many B truncatus snails, which are capable of transmitting S haematobium -group schistosomes. Our molecular data suggest that the parasites were imported into Corsica by individuals infected in west Africa, specifically Senegal. Hybridisation between S haematobium and the cattle schistosome S bovis had a putative role in this outbreak, showing how easily and rapidly urogenital schistosomiasis can be introduced and spread into novel areas where Bulinus snails are endemic, and how hybridisation could increase the colonisation potential of schistosomes. Furthermore our results show the potential risk of schistosomiasis outbreaks in other European areas, warranting close monitoring and surveillance of all potential transmission foci. Funding WHO, ANSES, RICET, and the Ministry of Health and Consumption.

207 citations

Journal ArticleDOI
TL;DR: The first evidence that a shift from a cellular immune response to a humoral immune response occurs during the development of innate memory is provided, in the Lophotrochozoan snail, Biomphalaria glabrata.
Abstract: Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems.

102 citations

Journal ArticleDOI
TL;DR: The immune effector cells (hemocytes) of the snail host Biomphalaria glabrata are known to play a key role in recognition and elimination of larval helminths such as the human blood fluke Schistosoma mansoni, and the potential involvement of these genes in snail-trematode immunobiological interactions is investigated.
Abstract: The immune effector cells (hemocytes) of the snail host Biomphalaria glabrata are known to play a key role in recognition and elimination of larval helminths such as the human blood fluke Schistosoma mansoni. To identify novel immune-relevant genes, we undertook an expressed sequence tag program. A hemocyte cDNA library was constructed using snails that were not exposed to a particular pathogen or parasite but maintained in non-axenic conditions. Putative function could be assigned to 53% of the 1613 high quality cDNAs analysed. Based on sequence similarities, we identified 31 immune-relevant genes corresponding either to cellular defence effectors, proteases and protease inhibitors, pattern recognition receptors, cell adhesion molecules or immune regulators. In order to further investigate the potential involvement of these genes in snail-trematode immunobiological interactions, we analysed their expression in unchallenged and parasite-challenged snails, using the immunosuppressive trematode Echinostoma caproni and snail strains selected for resistance or susceptibility to this parasite. Real-time PCR analysis of expression ratios at 7 time-points post-exposure revealed both (i) genes displaying constitutive expression differences between the two strains; and (ii) genes differentially modulated after parasite exposure.

95 citations

Journal ArticleDOI
TL;DR: These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni and show that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing.
Abstract: Aerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni.

92 citations

Journal ArticleDOI
TL;DR: This study increased over two fold the number of bonafide FREP subfamilies and revealed important sequence diversity within FREP12 subfamily and the discovery of related molecules that feature one or two IgSF domains associated with different C-terminal lectin domains, named C-type lectin-related proteins (CREPs) and Galectin- related protein (GREP).
Abstract: Technical limitations have hindered comprehensive studies of highly variable immune response molecules that are thought to have evolved due to pathogen-mediated selection such as fibrinogen-related proteins (FREPs) from Biomphalaria glabrata. FREPs combine upstream immunoglobulin superfamily (IgSF) domains with a C-terminal fibrinogen-related domain (FreD) and participate in reactions against trematode parasites. From RNAseq data we assembled a de novo reference transcriptome of B. glabrata to investigate the diversity of FREP transcripts. This study increased over two fold the number of bonafide FREP subfamilies and revealed important sequence diversity within FREP12 subfamily. We also report the discovery of related molecules that feature one or two IgSF domains associated with different C-terminal lectin domains, named C-type lectin-related proteins (CREPs) and Galectin-related protein (GREP). Together, the highly similar FREPs, CREPs and GREP were designated VIgL (Variable Immunoglobulin and Lectin domain containing molecules).

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The diverse pore architectures and membrane insertion mechanisms that have been revealed by structural studies of PFTs are discussed, and how these features contribute to binding specificity for different membrane targets are considered.
Abstract: Pore-forming toxins (PFTs) are virulence factors produced by many pathogenic bacteria and have long fascinated structural biologists, microbiologists and immunologists. Interestingly, pore-forming proteins with remarkably similar structures to PFTs are found in vertebrates and constitute part of their immune system. Recently, structural studies of several PFTs have provided important mechanistic insights into the metamorphosis of PFTs from soluble inactive monomers to cytolytic transmembrane assemblies. In this Review, we discuss the diverse pore architectures and membrane insertion mechanisms that have been revealed by these studies, and we consider how these features contribute to binding specificity for different membrane targets. Finally, we explore the potential of these structural insights to enable the development of novel therapeutic strategies that would prevent both the establishment of bacterial resistance and an excessive immune response.

571 citations

Journal ArticleDOI
TL;DR: The genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment as discussed by the authors, which can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition.
Abstract: Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.

540 citations

Journal Article
TL;DR: Fish embryos provide excellent animal models for understanding the regulatory roles of IGF, IGF receptor and IGF-binding proteins in vertebrate embryonic development, and current research on the developmental and nutritional role of IGF in fish will undoubtedly contribute to knowledge of the basic physiology of vertebrates in general.
Abstract: The insulin-like growth factors (IGF) are evolutionarily ancient growth factors present in all vertebrates. The central importance of IGF for normal development and growth has been illustrated by the severe growth-retarded phenotype exhibited by IGF-I, IGF-II or IGF-I receptor knockout mice. Although we know much about the gross effects of IGF on the overall size of the fetus and the clinical manifestations that result from fetal and neonatal deficiency of IGF (i.e., severe growth retardation leads to dwarfism), very little is known about the in vivo actions of IGF during embryogenesis at the cellular and molecular levels. Most research on the developmental role of IGF has relied on rodent models, and attempts to elucidate the molecular and cellular basis of IGF actions have been hampered by the inaccessibility of the mammalian fetus enclosed in the uterus. During the past decade, there has been growing support for the concept that the IGF have been highly conserved in all vertebrates. Both IGF-I and IGF-II are present in fish, and their structures are highly conserved. Human and fish IGF-I are equally potent in mammalian and fish bioassay systems. Insulin-like growth factor mRNA is found in all life stages of fish, ranging from unfertilized egg to adult. The temporal and spatial expression pattems of fish IGF-I seem to be similar to those in mammals. Nutritional status and growth hormone both have a profound effect on IGF-I expression in fish, as they do in mammals. These features suggest that the IGF system is highly conserved between teleost fish and mammals. Because fish embryos develop extemally, they provide excellent animal models for understanding the regulatory roles of IGF, IGF receptor and IGF-binding proteins in vertebrate embryonic development. Current research on the developmental and nutritional roles of IGF in fish will undoubtedly contribute to knowledge of the basic physiology of vertebrates in general.

357 citations

Journal ArticleDOI
TL;DR: It is discussed how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance.
Abstract: Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human-animal-ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the "One Health" concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the "One Health" concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.

346 citations

Journal ArticleDOI
TL;DR: Overall, there is now substantial evidence to suggest that coevolutionary dynamics of hosts and parasites do not favor long-term cospeciation, and approaches to compare divergence between pairwise associated groups of species, their advantages and pitfalls are outlined.
Abstract: 'Summary' 347 I. 'Introduction' 348 II. 'Origin of the cospeciation concept' 349 III. 'Theoretical framework and methods for testing for cospeciation' 349 IV. 'Studies of natural associations reveal the prevalence of host shifts' 355 V. 'Relationship between host–symbiont coevolution and symbiont speciation' 378 VI. 'Conclusion' 381 'Acknowledgements' 381 References 381 Glossary 379 Summary Hosts and their symbionts are involved in intimate physiological and ecological interactions. The impact of these interactions on the evolution of each partner depends on the time-scale considered. Short-term dynamics – ‘coevolution’ in the narrow sense – has been reviewed elsewhere. We focus here on the long-term evolutionary dynamics of cospeciation and speciation following host shifts. Whether hosts and their symbionts speciate in parallel, by cospeciation, or through host shifts, is a key issue in host–symbiont evolution. In this review, we first outline approaches to compare divergence between pairwise associated groups of species, their advantages and pitfalls. We then consider recent insights into the long-term evolution of host–parasite and host–mutualist associations by critically reviewing the literature. We show that convincing cases of cospeciation are rare (7%) and that cophylogenetic methods overestimate the occurrence of such events. Finally, we examine the relationships between short-term coevolutionary dynamics and long-term patterns of diversification in host–symbiont associations. We review theoretical and experimental studies showing that short-term dynamics can foster parasite specialization, but that these events can occur following host shifts and do not necessarily involve cospeciation. Overall, there is now substantial evidence to suggest that coevolutionary dynamics of hosts and parasites do not favor long-term cospeciation.

332 citations