scispace - formally typeset
Search or ask a question
Author

Jean-François Donati

Bio: Jean-François Donati is an academic researcher from University of Toulouse. The author has contributed to research in topics: Stars & T Tauri star. The author has an hindex of 71, co-authored 302 publications receiving 16949 citations. Previous affiliations of Jean-François Donati include Los Angeles Trade–Technical College & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the results of five years (five runs, 23 nights) of spectropolarimetric observations of active stars with the UCL Echelle Spectrograph of the Anglo-Australian Telescope were reported.
Abstract: This paper reports the results of five years (five runs, 23 nights) of spectropolarimetric observations of active stars with the UCL Echelle Spectrograph of the Anglo-Australian Telescope. 225 circularly (and four linearly) polarized spectra were recorded on 28 objects (21 active stars and seven calibration standards) using the new technique of Zeeman-Doppler imaging. To extract polarization echelle spectra from raw frames, we developed a new dedicated automatic software package (called ESpRIT, which utilizes optimal extraction techniques) whose detailed description is given in the paper. For each recorded spectrum, we extract 'mean' polarized and unpolarized profiles using 'least-squares deconvolution', a technique similar to cross-correlation, which can enhance enormously the sensitivity of Zeeman-Doppler imaging, by up to 7.5 mag in flux with respect to a single average line analysis or by 4.5 mag compared with the older technique of Donati et al. in the particular case of a K1 star. Magnetic field is detected unambiguously on 14 objects, namely the weak-line T Tauri star V410 Tau, the pre-main-sequence binary HD 155555, the ZAMS stars AB Dor and LQ Hya, the dwarf flare star CC Eri, the RS CVn systems HR 1099, EI Eri, TY Pyx, CF Tue, SZ Psc, II Peg, IM Peg and IL Hya, and the FK Com star YY Men. Marginal field detections are also obtained for the weak-line T Tauri star HD 283572 and the Herbig Ae star HD 104237. Except on HR 1099 and II Peg, our results represent the first direct field detections ever reported on these objects, and in particular the first direct field detection on as young a star as V410 Tau. Most of the magnetic signatures we detect on cool stars show several sign reversals throughout the line profile, indicating that the parent field structure is rather complex and must feature (as expected) many small-scale magnetic regions of different polarities. For all stars on which Zeeman detections are recorded with sufficient accuracy (namely LQ Hya, CC Eri, HR 1099, El Eri, II Peg, IL Hya and YY Men), differential least-squares deconvolution from both the blue and the red parts of the spectral domain indicates that the magnetic regions we detect are mostly 500 to 1000 K cooler than, and sometimes at the same temperature as, but never warmer than the surrounding photosphere. Serendipitous results include the first detection (i) of small-amplitude radial velocity variations (1.3 kms -1 peak to peak) of the Herbig Ae star HD 104237 with small enough a period (37.5 ± 1 min) that they must be due to stellar pulsations and (ii) of the solar-like secondary component of the RS CVn system IL Hya.

1,599 citations

Journal ArticleDOI
TL;DR: Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars as mentioned in this paper.
Abstract: Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a few μG (e.g., in molecular clouds) to TG and more (e.g., in magnetic neutron stars); in nondegenerate stars in particular, they feature large-scale topologies varying from simple nearly axisymmetric dipoles to complex nonaxsymmetric structures, and from mainly poloidal to mainly toroidal topologies. After recalling the main techniques of detecting and modeling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot, and young nondegenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.

644 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the existing properties of magnetic fields reported in cool, hot and young non-degenerate stars and protostars, and discuss their understanding of the origin of these fields and their impact on the birth and life of stars.
Abstract: Magnetic fields are present in a wide variety of stars through out the HR diagram and play a role at basically all evolutionary stages, from very-low- mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved gi- ants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a fewG (e.g., in molecular clouds) to TG and more (e.g., in magnetic neutron stars); in non-degenerate stars in particular, they feature large-scale topologies varying f rom simple nearly-axisymmetric dipoles to complex non-axsymmetric structures, and from mainly poloidal to mainly toroidal topology. After recalling the main techniques of detecting and modelling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot and young non-degenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.

643 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of a medium-strength magnetic field on the young, massive star? Sco (B0.2V), which becomes the third-hottest magnetic star known.
Abstract: We report the discovery of a medium-strength (~0.5 kG) magnetic field on the young, massive star ? Sco (B0.2V), which becomes the third-hottest magnetic star known. Circularly polarized Zeeman signatures are clearly detected in observations collected mostly with the ESPaDOnS spectropolarimeter, recently installed on the 3.6-m Canada-France-Hawaii Telescope; temporal variability is also clearly established in the polarimetry, and can be unambiguously attributed to rotational modulation with a period close to 41 d. Archival ultraviolet (UV) spectra confirm that this modulation repeats over time-scales of decades, and refine the rotation period to 41.033 +/- 0.002 d. Despite the slow rotation rate of ? Sco, we none the less succeed in reconstructing the large-scale structure of its magnetic topology. We find that the magnetic structure is unusually complex for a hot star, with significant power in spherical-harmonic modes of degree up to 5. The surface topology is dominated by a potential field, although a moderate toroidal component is probably present. We fail to detect intrinsic temporal variability of the magnetic structure over the 1.5-yr period of our spectropolarimetric observations (in agreement with the stable temporal variations of the UV spectra), and infer that any differential surface rotation must be very small. The topology of the extended magnetic field that we derive from the photospheric magnetic maps is also more complex than a global dipole, and features in particular a significantly warped torus of closed magnetic loops encircling the star (tilted at about 90° to the rotation axis), with additional, smaller, networks of closed-field lines. This topology appears to be consistent with the exceptional X-ray properties of ? Sco and also provides a natural explanation of the variability observed in wind-formed UV lines. Although we cannot completely rule out the possibility that the field is produced through dynamo processes of an exotic kind, we conclude that its magnetic field is most probably a fossil remnant from the star formation stage. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. E-mail: donati@ast.obs-mip.fr (J-FD); idh@star.ucl.ac.uk (IDH); mmj@st-andrews.ac.uk (MMJ); petit@ast.obs-mip.fr (PP); claude.catala@obspm.fr (CC); jlandstr@uwo.ca (JDL); jean-claude.bouret@oamp.fr (J-CB); evelyne.alecian@obspm.fr (EA); jrb3@st-andrews.ac.uk (JRB); forveill@cfht.hawaii.edu (TF); fpaletou@ast.obs-mip.fr (FP); manset@cfht.hawaii.edu (NM)

469 citations

Journal ArticleDOI
TL;DR: In this article, a small sample of stars ranging from spectral type M0 to M8 was used to investigate how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4).
Abstract: We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0--M3), i.e. above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarised profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of 6 early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field ressembling those found in mid-M dwarfs. This abrupt change in the large-scale magnetic topologies of M dwarfs (occuring at spectral type M3) has no related signature on X-ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large-scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low-mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully-convective stars.

429 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as mentioned in this paper was selected by NASA for launch in 2017 as an Astrophysics Explorer mission to search for planets transiting bright and nearby stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

1,728 citations

Journal ArticleDOI
TL;DR: The current understanding of astrophysical magnetic fields is reviewed in this paper, focusing on their generation and maintenance by turbulence, where analytical and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamo, where some form of parity breaking is crucial.

1,548 citations