scispace - formally typeset
Search or ask a question
Author

Jean-Francois Drillet

Bio: Jean-Francois Drillet is an academic researcher from DECHEMA. The author has contributed to research in topics: Direct methanol fuel cell & Gas diffusion electrode. The author has an hindex of 14, co-authored 32 publications receiving 835 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, thosebased on non-aqueously electrolytes, are described, attempting to forecast their chances to reach the status of practical energy storage systems.
Abstract: A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long-term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li-ion technology because of their high volumetric capacity (8040 mAh cm(-3) for Al vs 2046 mAh cm(-3) for Li). Additionally, the low cost aluminum makes these batteries appealing for large-scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non-aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation-deintercalation process. Finally, we touch on the topic of high-capacity aluminum-sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.

579 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of using poly(3,4-ethylenedioxythiophene) (PEDOT) as Pt catalyst support for direct methanol fuel cell (DMFC) anodes was investigated.
Abstract: The feasibility of using poly(3,4-ethylenedioxythiophene) (PEDOT) as Pt catalyst support for direct methanol fuel cell (DMFC) anodes was investigated. Measurements with freshly prepared Pt-PEDOT/C electrodes showed poor activity for methanol oxidation in a half-cell and a DMFC. A substantial enhancement in that activity was evident after either electrochemical over-oxidation of PEDOT or long-time storage of the Pt-PEDOT/C gas diffusion electrode (GDE) in air. Both procedures led to a reorganization and increase in porosity of the reaction layer, which obviously contributed to better methanol accessibility to Pt catalyst active centres. The effects of electrochemical activation and long-time storage in air on the morphology and elementary composition of the Pt-PEDOT layer were investigated by means of Hg porosimetry and SEM/EDAX. It was found that the increase in porosity was due to degradation of PEDOT characterized by a significant depletion of sulphur and oxygen in the conducting polymer matrix.

50 citations

Journal ArticleDOI
TL;DR: In this article, several commercial carbons were tested with respect to their thermal stability and electrochemical activity as Pt catalyst support for oxygen reduction reaction (ORR), and the best results in terms of activity for ORR and stability during electrochemical accelerated degradation tests were yielded by Pt/GNP500 and Pt/OMC, respectively.
Abstract: Several commercial carbons were tested with respect to their thermal stability and electrochemical activity as Pt catalyst support for oxygen reduction reaction (ORR). TGA analysis revealed that carbons with low BET surface such as graphite nanoparticles (GNP500, 100 m² g−1) are less prone to degradation than ordered mesoporous carbon (OMC, 1000 m²g−1). Moreover, high Pt loading favored considerably carbon oxidation rate in air. Best results in terms of activity for ORR and stability during electrochemical accelerated degradation tests (ADT) were yielded by Pt/GNP500 and Pt/OMC, respectively. High graphitization level and mesoporous surface structure of carbon were found to be determinant for sustainable Pt stability. Addition of certain amount of PTFE to Nafion as binder in gas diffusion electrode (GDE) catalyst layer clearly improved electrochemical surface area (ECSA) retention. Comparative identical location TEM images of electrochemically-aged Pt on Vulcan and OMC demonstrated positive influence of mesoporous carbon surface on immobilization of catalyst particles and consequently on ECSA retention. After 10,000 ADT cycles, ECSA retention was close to 30% for Pt/OMC compared to about 1% for Pt/Vulcan. This was due to dramatic increase of Pt particle size on Vulcan support up to 40 nm compared to about 15 nm for Pt on OMC.

46 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of AlCl3-based acetamide and urea deep-eutectic solvents as electrolyte for rechargeable Aluminium/air cell was evaluated under half-cell and full-cell conditions under ultra-dry atmosphere.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in rechargeable aqueous zinc-ion batteries (ZIBs) is presented, highlighting the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms.
Abstract: Although current high-energy-density lithium-ion batteries (LIBs) have taken over the commercial rechargeable battery market, increasing concerns about limited lithium resources, high cost, and insecurity of organic electrolyte scale-up limit their further development. Rechargeable aqueous zinc-ion batteries (ZIBs), an alternative battery chemistry, have paved the way not only for realizing environmentally benign and safe energy storage devices but also for reducing the manufacturing costs of next-generation batteries. This Review underscores recent advances in aqueous ZIBs; these include the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms. We also present recent advanced techniques that aim at overcoming the current issues in aqueous ZIB systems. This Review on the future perspectives and research directions will provide a guide for future aqueous ZIB study.

1,370 citations

Journal ArticleDOI
TL;DR: In this paper, the performance and issues associated with a variety of carbon based materials such as carbon nanotubes (CNT), carbon nanofibers (CNF), mesoporous carbon and graphene as well as non-carbonaceous based materials, e.g. titania, indium oxides, alumina, silica and tungsten oxide and carbide, ceria, zirconia nanostructures and conducting polymers catalyst support materials are clearly described in this review.

1,041 citations

Journal ArticleDOI
TL;DR: The progress made and the road ahead for salt-concentrated electrolytes, an emerging and promising electrolyte candidate are reviewed, including a multi-angle analysis of their advantages and disadvantages together with future perspectives.
Abstract: With a worldwide trend towards the efficient use of renewable energies and the rapid expansion of the electric vehicle market, the importance of rechargeable battery technologies, particularly lithium-ion batteries, has steadily increased. In the past few years, a major breakthrough in electrolyte materials was achieved by simply increasing the salt concentration in suitable salt–solvent combinations, offering technical superiority in numerous figures of merit over alternative materials. This long-awaited, extremely simple yet effective strategy can overcome most of the remaining hurdles limiting the present lithium-ion batteries without sacrificing manufacturing efficiency, and hence its impact is now widely felt in the scientific community, with serious potential for industrial development. This Review aims to provide timely and objective information that will be valuable for designing better realistic batteries, including a multi-angle analysis of their advantages and disadvantages together with future perspectives. Emphasis is placed on the pathways to address the remaining technical and scientific issues rather than re-highlighting the many technical advantages. New electrolyte materials can offer breakthroughs in the development of next-generation batteries. Here Atsuo Yamada and colleagues review the progress made and the road ahead for salt-concentrated electrolytes, an emerging and promising electrolyte candidate.

829 citations