scispace - formally typeset
Search or ask a question
Author

Jean-François Raskin

Bio: Jean-François Raskin is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Decidability & Markov decision process. The author has an hindex of 47, co-authored 293 publications receiving 7429 citations. Previous affiliations of Jean-François Raskin include Free University of Brussels & Université de Namur.


Papers
More filters
Posted Content
TL;DR: MEMDPs are introduced which are MDPs with a set of probabilistic transition functions to synthesize a single controller with guaranteed performances against all environments even though the environment is unknown a priori.
Abstract: We introduce Multi-Environment Markov Decision Processes (MEMDPs) which are MDPs with a set of probabilistic transition functions. The goal in a MEMDP is to synthesize a single controller with guaranteed performances against all environments even though the environment is unknown a priori. While MEMDPs can be seen as a special class of partially observable MDPs, we show that several verification problems that are undecidable for partially observable MDPs, are decidable for MEMDPs and sometimes have even efficient solutions.

8 citations

Posted Content
TL;DR: The more general problem of determining if a player can attain a payoff in a finite union of arbitrary intervals for various payoff functions is considered, including the interesting exact-value problem, "Can Eve achieve a payoff of exactly (e.g.) 0?"
Abstract: Traditionally quantitative games such as mean-payoff games and discount sum games have two players -- one trying to maximize the payoff, the other trying to minimize it. The associated decision problem, "Can Eve (the maximizer) achieve, for example, a positive payoff?" can be thought of as one player trying to attain a payoff in the interval $(0,\infty)$. In this paper we consider the more general problem of determining if a player can attain a payoff in a finite union of arbitrary intervals for various payoff functions (liminf, mean-payoff, discount sum, total sum). In particular this includes the interesting exact-value problem, "Can Eve achieve a payoff of exactly (e.g.) 0?"

8 citations

Posted Content
TL;DR: The approach is a careful combination of the Angluin's L* active learning algorithm to learn finite automata, testing techniques for establishing conformance of finite model hypothesis and optimisation techniques for computing optimal strategies in Markovian (immediate) reward MDPs.
Abstract: There are situations in which an agent should receive rewards only after having accomplished a series of previous tasks. In other words, the reward that the agent receives is non-Markovian. One natural and quite general way to represent history-dependent rewards is via a Mealy machine; a finite state automaton that produces output sequences (rewards in our case) from input sequences (state/action observations in our case). In our formal setting, we consider a Markov decision process (MDP) that models the dynamic of the environment in which the agent evolves and a Mealy machine synchronised with this MDP to formalise the non-Markovian reward function. While the MDP is known by the agent, the reward function is unknown from the agent and must be learnt. Learning non-Markov reward functions is a challenge. Our approach to overcome this challenging problem is a careful combination of the Angluin's L* active learning algorithm to learn finite automata, testing techniques for establishing conformance of finite model hypothesis and optimisation techniques for computing optimal strategies in Markovian (immediate) reward MDPs. We also show how our framework can be combined with classical heuristics such as Monte Carlo Tree Search. We illustrate our algorithms and a preliminary implementation on two typical examples for AI.

8 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Journal ArticleDOI
TL;DR: PDDL2.1 as discussed by the authors is a modelling language capable of expressing temporal and numeric properties of planning domains and has been used in the International Planning Competitions (IPC) since 1998.
Abstract: In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover exploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power -- exceeding the capabilities of current planning technology -- and presents a number of important challenges to the research community.

1,420 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: This work presents an algorithm for model checking safety properties using lazy abstraction and describes an implementation of the algorithm applied to C programs and provides sufficient conditions for the termination of the method.
Abstract: One approach to model checking software is based on the abstract-check-refine paradigm: build an abstract model, then check the desired property, and if the check fails, refine the model and start over. We introduce the concept of lazy abstraction to integrate and optimize the three phases of the abstract-check-refine loop. Lazy abstraction continuously builds and refines a single abstract model on demand, driven by the model checker, so that different parts of the model may exhibit different degrees of precision, namely just enough to verify the desired property. We present an algorithm for model checking safety properties using lazy abstraction and describe an implementation of the algorithm applied to C programs. We also provide sufficient conditions for the termination of the method.

1,238 citations