scispace - formally typeset
Search or ask a question
Author

Jean-François Raskin

Bio: Jean-François Raskin is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Decidability & Markov decision process. The author has an hindex of 47, co-authored 293 publications receiving 7429 citations. Previous affiliations of Jean-François Raskin include Free University of Brussels & Université de Namur.


Papers
More filters
Book ChapterDOI
24 Jun 2013
TL;DR: π-Petri nets are introduced, an extension of plain Petri nets with ω-labeled input and output arcs that is well-suited to analyse parametric concurrent systems with dynamic thread creation and complexity bounds for the reachability, (place) boundedness and coverability problems on ωPN.
Abstract: We introduce ω-Petri nets (ωPN), an extension of plain Petri nets with ω-labeled input and output arcs, that is well-suited to analyse parametric concurrent systems with dynamic thread creation. Most techniques (such as the Karp and Miller tree or the Rackoff technique) that have been proposed in the setting of plain Petri nets do not apply directly to ωPN because ωPN define transition systems that have infinite branching. This motivates a thorough analysis of the computational aspects of ωPN. We show that an ωPN can be turned into a plain Petri net that allows to recover the reachability set of the ωPN, but that does not preserve termination. This yields complexity bounds for the reachability, (place) boundedness and coverability problems on ωPN. We provide a practical algorithm to compute a coverability set of the ωPN and to decide termination by adapting the classical Karp and Miller tree construction. We also adapt the Rackoff technique to ωPN, to obtain the exact complexity of the termination problem. Finally, we consider the extension of ωPN with reset and transfer arcs, and show how this extension impacts the decidability and complexity of the aforementioned problems.

7 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs, and to design efficient pseudo- antichain based symblicit algorithms for two quantitative settings: the expected mean-payoff and the stochastic shortest path.
Abstract: When treating Markov decision processes (MDPs) with large state spaces, using explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algorithm for the synthesis of optimal strategies in MDPs, in the quantitative setting of expected mean-payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic representation. The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest path. For two practical applications coming from automated planning and $$\mathsf {LTL}$$ synthesis, we report promising experimental results w.r.t. both the run time and the memory consumption. We also show that a variant of pseudo-antichains allows to handle the infinite state spaces underlying the qualitative verification of probabilistic lossy channel systems.

7 citations

Journal ArticleDOI
30 Apr 2015
TL;DR: This article proposes Queue-Dispatch Asynchronous Systems as a mathematical model that faithfully formalizes the synchronization mechanisms and behavior of the scheduler in those systems and studies in detail their relationships to classical formalisms such as pushdown systems, Petri nets, Fifo systems, and counter systems.
Abstract: Recently, new libraries, such as Grand Central Dispatch (GCD), have been proposed to directly harness the power of multicore platforms and to make the development of concurrent software more accessible to software engineers. When using such a library, the programmer writes so-called blocks, which are chunks of code, and dispatches them using synchronous or asynchronous calls to several types of waiting queues. A scheduler is then responsible for dispatching those blocks among the available cores. Blocks can synchronize via a global memory. In this article, we propose Queue-Dispatch Asynchronous Systems as a mathematical model that faithfully formalizes the synchronization mechanisms and behavior of the scheduler in those systems. We study in detail their relationships to classical formalisms such as pushdown systems, Petri nets, Fifo systems, and counter systems. Our main technical contributions are precise worst-case complexity results for the Parikh coverability problem and the termination problem for several subclasses of our model. We also consider an extension of Qdas with a fork-join mechanism. Adding fork-join to any of the subclasses that we have identified leads to undecidability of the coverability problem. This motivates the study of over-approximations. Finally, we consider handmade abstractions as a practical way of verifying programs that cannot be faithfully modeled by decidable subclasses of Qdas.

7 citations

Proceedings Article
01 Jan 2019
TL;DR: In this paper, the problem of finding a subgame perfect equilibrium in quantitative reachability games is shown to be PSPACE-complete, and a new algorithm that iteratively builds a set of constraints characterizing the set of sub-game perfect equilibria is proposed.
Abstract: We study multiplayer quantitative reachability games played on a finite directed graph, where the objective of each player is to reach his target set of vertices as quickly as possible. Instead of the well-known notion of Nash equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of NE well-suited in the framework of games played on graphs. It is known that there always exists an SPE in quantitative reachability games and that the constrained existence problem is decidable. We here prove that this problem is PSPACE-complete. To obtain this result, we propose a new algorithm that iteratively builds a set of constraints characterizing the set of SPE outcomes in quantitative reachability games. This set of constraints is obtained by iterating an operator that reinforces the constraints up to obtaining a fixpoint. With this fixpoint, the set of SPE outcomes can be represented by a finite graph of size at most exponential. A careful inspection of the computation allows us to establish PSPACE membership.

6 citations

Proceedings ArticleDOI
08 Jul 2020
TL;DR: This paper provides algorithms to solve the general case of Boolean combinations for Boolean combinations of objectives and investigates relevant subcases, reporting on complexity bounds for these problems.
Abstract: In this paper, we consider algorithms to decide the existence of strategies in MDPs for Boolean combinations of objectives. These objectives are omega-regular properties that need to be enforced either surely, almost surely, existentially, or with non-zero probability. In this setting, relevant strategies are randomized infinite memory strategies: both infinite memory and randomization may be needed to play optimally. We provide algorithms to solve the general case of Boolean combinations and we also investigate relevant subcases. We further report on complexity bounds for these problems.

6 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Journal ArticleDOI
TL;DR: PDDL2.1 as discussed by the authors is a modelling language capable of expressing temporal and numeric properties of planning domains and has been used in the International Planning Competitions (IPC) since 1998.
Abstract: In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover exploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power -- exceeding the capabilities of current planning technology -- and presents a number of important challenges to the research community.

1,420 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: This work presents an algorithm for model checking safety properties using lazy abstraction and describes an implementation of the algorithm applied to C programs and provides sufficient conditions for the termination of the method.
Abstract: One approach to model checking software is based on the abstract-check-refine paradigm: build an abstract model, then check the desired property, and if the check fails, refine the model and start over. We introduce the concept of lazy abstraction to integrate and optimize the three phases of the abstract-check-refine loop. Lazy abstraction continuously builds and refines a single abstract model on demand, driven by the model checker, so that different parts of the model may exhibit different degrees of precision, namely just enough to verify the desired property. We present an algorithm for model checking safety properties using lazy abstraction and describe an implementation of the algorithm applied to C programs. We also provide sufficient conditions for the termination of the method.

1,238 citations