scispace - formally typeset
Search or ask a question
Author

Jean Harb

Bio: Jean Harb is an academic researcher from McGill University. The author has contributed to research in topics: Reinforcement learning & Flexibility (engineering). The author has an hindex of 10, co-authored 11 publications receiving 2606 citations.

Papers
More filters
Posted Content
TL;DR: An adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination is presented.
Abstract: We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

1,477 citations

Proceedings Article
07 Jun 2017
TL;DR: In this article, an actor-critic method was used to learn multi-agent coordination policies in cooperative and competitive multi-player RL games, where agent populations are able to discover various physical and informational coordination strategies.
Abstract: We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

1,273 citations

Posted Content
TL;DR: This paper propose a new option-critic architecture capable of learning both the internal policies and the termination conditions of options, in tandem with the policy over options, without the need to provide any additional rewards or subgoals.
Abstract: Temporal abstraction is key to scaling up learning and planning in reinforcement learning. While planning with temporally extended actions is well understood, creating such abstractions autonomously from data has remained challenging. We tackle this problem in the framework of options [Sutton, Precup & Singh, 1999; Precup, 2000]. We derive policy gradient theorems for options and propose a new option-critic architecture capable of learning both the internal policies and the termination conditions of options, in tandem with the policy over options, and without the need to provide any additional rewards or subgoals. Experimental results in both discrete and continuous environments showcase the flexibility and efficiency of the framework.

637 citations

Proceedings Article
16 Sep 2016
TL;DR: This article propose a new option-critic architecture capable of learning both the internal policies and the termination conditions of options, in tandem with the policy over options, without the need to provide any additional rewards or subgoals.
Abstract: Temporal abstraction is key to scaling up learning and planning in reinforcement learning. While planning with temporally extended actions is well understood, creating such abstractions autonomously from data has remained challenging.We tackle this problem in the framework of options [Sutton,Precup and Singh, 1999; Precup, 2000]. We derive policy gradient theorems for options and propose a new option-critic architecture capable of learning both the internal policies and the termination conditions of options, in tandem with the policy over options, and without the need to provide any additional rewards or subgoals. Experimental results in both discrete and continuous environments showcase the flexibility and efficiency of the framework.

339 citations

Proceedings Article
29 Apr 2018
TL;DR: This work forms the answer to what "good" options should be in the bounded rationality framework through the notion of deliberation cost and derives practical gradient-based learning algorithms to implement this objective.
Abstract: Recent work has shown that temporally extended actions (options) can be learned fully end-to-end as opposed to being specified in advance. While the problem of how to learn options is increasingly well understood, the question of what good options should be has remained elusive. We formulate our answer to what good options should be in the bounded rationality framework (Simon, 1957) through the notion of deliberation cost. We then derive practical gradient-based learning algorithms to implement this objective. Our results in the Arcade Learning Environment (ALE) show increased performance and interpretability.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higher-level understanding of the visual world as discussed by the authors.
Abstract: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higherlevel understanding of the visual world. Currently, deep learning is enabling reinforcement learning (RL) to scale to problems that were previously intractable, such as learning to play video games directly from pixels. DRL algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of RL, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via RL. To conclude, we describe several current areas of research within the field.

1,743 citations

Journal ArticleDOI
TL;DR: This survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic, and highlight the unique advantages of deep neural networks, focusing on visual understanding via RL.
Abstract: Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep $Q$-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.

1,707 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking, and presents applications of DRL for traffic routing, resource sharing, and data collection.
Abstract: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL.

1,153 citations

Proceedings ArticleDOI
21 May 2018
TL;DR: In this article, the authors demonstrate a simple method to bridge the "reality gap" by randomizing the dynamics of the simulator during training and develop policies that are capable of adapting to very different dynamics, including ones that differ significantly from the dynamics on which the policies were trained.
Abstract: Simulations are attractive environments for training agents as they provide an abundant source of data and alleviate certain safety concerns during the training process. But the behaviours developed by agents in simulation are often specific to the characteristics of the simulator. Due to modeling error, strategies that are successful in simulation may not transfer to their real world counterparts. In this paper, we demonstrate a simple method to bridge this “reality gap”. By randomizing the dynamics of the simulator during training, we are able to develop policies that are capable of adapting to very different dynamics, including ones that differ significantly from the dynamics on which the policies were trained. This adaptivity enables the policies to generalize to the dynamics of the real world without any training on the physical system. Our approach is demonstrated on an object pushing task using a robotic arm. Despite being trained exclusively in simulation, our policies are able to maintain a similar level of performance when deployed on a real robot, reliably moving an object to a desired location from random initial configurations. We explore the impact of various design decisions and show that the resulting policies are robust to significant calibration error.

1,103 citations

Posted Content
TL;DR: This work discusses core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration, and important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn.
Abstract: We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.

935 citations