scispace - formally typeset
Search or ask a question
Author

Jean Kossaifi

Other affiliations: Samsung, Imperial College London
Bio: Jean Kossaifi is an academic researcher from Nvidia. The author has contributed to research in topics: Tensor & Computer science. The author has an hindex of 19, co-authored 62 publications receiving 2670 citations. Previous affiliations of Jean Kossaifi include Samsung & Imperial College London.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is illustrated how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps and its application to neuroimaging data provides a versatile tool to study the brain.
Abstract: Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

1,418 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The first benchmark for long-term facial landmark tracking, containing currently over 110 annotated videos, is presented, and the results of the competition on facial landmark localisation in static imagery are summarized.
Abstract: Detection and tracking of faces in image sequences is among the most well studied problems in the intersection of statistical machine learning and computer vision. Often, tracking and detection methodologies use a rigid representation to describe the facial region 1, hence they can neither capture nor exploit the non-rigid facial deformations, which are crucial for countless of applications (e.g., facial expression analysis, facial motion capture, high-performance face recognition etc.). Usually, the non-rigid deformations are captured by locating and tracking the position of a set of fiducial facial landmarks (e.g., eyes, nose, mouth etc.). Recently, we witnessed a burst of research in automatic facial landmark localisation in static imagery. This is partly attributed to the availability of large amount of annotated data, many of which have been provided by the first facial landmark localisation challenge (also known as 300-W challenge). Even though now well established benchmarks exist for facial landmark localisation in static imagery, to the best of our knowledge, there is no established benchmark for assessing the performance of facial landmark tracking methodologies, containing an adequate number of annotated face videos. In conjunction with ICCV'2015 we run the first competition/challenge on facial landmark tracking in long-term videos. In this paper, we present the first benchmark for long-term facial landmark tracking, containing currently over 110 annotated videos, and we summarise the results of the competition.

322 citations

Posted Content
TL;DR: In this paper, a stochastic activation pruning (SAP) strategy is proposed for adversarial defense against adversarial examples in deep learning networks, where a random subset of activations are pruned and the survivors are scaled up to compensate.
Abstract: Neural networks are known to be vulnerable to adversarial examples. Carefully chosen perturbations to real images, while imperceptible to humans, induce misclassification and threaten the reliability of deep learning systems in the wild. To guard against adversarial examples, we take inspiration from game theory and cast the problem as a minimax zero-sum game between the adversary and the model. In general, for such games, the optimal strategy for both players requires a stochastic policy, also known as a mixed strategy. In this light, we propose Stochastic Activation Pruning (SAP), a mixed strategy for adversarial defense. SAP prunes a random subset of activations (preferentially pruning those with smaller magnitude) and scales up the survivors to compensate. We can apply SAP to pretrained networks, including adversarially trained models, without fine-tuning, providing robustness against adversarial examples. Experiments demonstrate that SAP confers robustness against attacks, increasing accuracy and preserving calibration.

281 citations

Posted Content
TL;DR: TensorLy is a Python library that provides a high-level API for tensor methods and deep tensorized neural networks and aims to follow the same standards adopted by the main projects of the Python scientific community, and to seamlessly integrate with them.
Abstract: Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed \emph{TensorLy}, a high-level API for tensor methods and deep tensorized neural networks in Python. TensorLy aims to follow the same standards adopted by the main projects of the Python scientific community, and seamlessly integrates with them. Its BSD license makes it suitable for both academic and commercial applications. TensorLy's backend system allows users to perform computations with NumPy, MXNet, PyTorch, TensorFlow and CuPy. They can be scaled on multiple CPU or GPU machines. In addition, using the deep-learning frameworks as backend allows users to easily design and train deep tensorized neural networks. TensorLy is available at this https URL

193 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Abstract: Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

173 citations


Cited by
More filters
Posted Content
TL;DR: This work identifies obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples, and develops attack techniques to overcome this effect.
Abstract: We identify obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples. While defenses that cause obfuscated gradients appear to defeat iterative optimization-based attacks, we find defenses relying on this effect can be circumvented. We describe characteristic behaviors of defenses exhibiting the effect, and for each of the three types of obfuscated gradients we discover, we develop attack techniques to overcome it. In a case study, examining non-certified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 9 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely, and 1 partially, in the original threat model each paper considers.

1,757 citations

01 Jan 2016
TL;DR: As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads.
Abstract: Thank you very much for reading statistical parametric mapping the analysis of functional brain images. As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they cope with some infectious bugs inside their desktop computer.

1,719 citations

Journal ArticleDOI
TL;DR: fMRIPrep is a robust and easy-to-use pipeline for preprocessing of diverse fMRI data that dispenses of manual intervention, thereby ensuring the reproducibility of the results.
Abstract: Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.

1,465 citations