scispace - formally typeset
Search or ask a question
Author

Jean-Louis Mergny

Bio: Jean-Louis Mergny is an academic researcher from École Polytechnique. The author has contributed to research in topics: G-quadruplex & DNA. The author has an hindex of 75, co-authored 301 publications receiving 19146 citations. Previous affiliations of Jean-Louis Mergny include Nanyang Technological University & University of Paris-Sud.
Topics: G-quadruplex, DNA, Oligonucleotide, Telomere, Medicine


Papers
More filters
Journal ArticleDOI
TL;DR: The classic problems encountered during thermal denaturation experiments are presented and it is demonstrated that a number of useful pieces of information can be extracted from these experimental curves.
Abstract: Tm is defined as Temperature of melting or, more accurately, as temperature of midtransition. This term is often used for nucleic acids (DNA and RNA, oligonucleotides and polynucleotides). A thermal denaturation experiment determines the stability of the secondary structure of a DNA or RNA and aids in the choice of the sequences for antisense oligomers or PCR primers. Beyond a simple numerical value (the Tm), a thermal denaturation experiment, in which the folded fraction of a structure is plotted vs. temperature, yields important thermodynamic information. We present the classic problems encountered during these experiments and try to demonstrate that a number of useful pieces of information can be extracted from these experimental curves.

661 citations

Journal ArticleDOI
TL;DR: It is shown that the recording of reversible absorbance changes at 295 nm allows to precisely monitor intramolecular guanine (G)‐quartet formation and dissociation.

634 citations

Journal ArticleDOI
TL;DR: The objective of this review is to present the latest view on the mechanism(s) of action of telomerase inhibitors, with an emphasis on a specific class of telomere ligands called G-quadruplex ligands, and to discuss their potential use in oncology.

545 citations

Journal ArticleDOI
TL;DR: The G4Hunter algorithm is applied to genomes of a number of species, including humans, allowing us to conclude that the number of sequences capable of forming stable quadruplexes (at least in vitro) in the human genome is significantly higher, by a factor of 2–10, than previously thought.
Abstract: Critical evidence for the biological relevance of G-quadruplexes (G4) has recently been obtained in seminal studies performed in a variety of organisms. Four-stranded G-quadruplex DNA structures are promising drug targets as these non-canonical structures appear to be involved in a number of key biological processes. Given the growing interest for G4, accurate tools to predict G-quadruplex propensity of a given DNA or RNA sequence are needed. Several algorithms such as Quadparser predict quadruplex forming propensity. However, a number of studies have established that sequences that are not detected by these tools do form G4 structures (false negatives) and that other sequences predicted to form G4 structures do not (false positives). Here we report development and testing of a radically different algorithm, G4Hunter that takes into account G-richness and G-skewness of a given sequence and gives a quadruplex propensity score as output. To validate this model, we tested it on a large dataset of 392 published sequences and experimentally evaluated quadruplex forming potential of 209 sequences using a combination of biophysical methods to assess quadruplex formation in vitro. We experimentally validated the G4Hunter algorithm on a short complete genome, that of the human mitochondria (16.6 kb), because of its relatively high GC content and GC skewness as well as the biological relevance of these quadruplexes near instability hotspots. We then applied the algorithm to genomes of a number of species, including humans, allowing us to conclude that the number of sequences capable of forming stable quadruplexes (at least in vitro) in the human genome is significantly higher, by a factor of 2-10, than previously thought.

439 citations

Journal ArticleDOI
TL;DR: Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form, however, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex.
Abstract: Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson-Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C*C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding.

415 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: Novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions that undergo a spontaneous conforma-tional change when they hybridize to their targets are developed.
Abstract: We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced.

4,584 citations