scispace - formally typeset
Search or ask a question
Author

Jean-Luc Redelsperger

Bio: Jean-Luc Redelsperger is an academic researcher from IFREMER. The author has contributed to research in topics: Convection & Mesoscale meteorology. The author has an hindex of 43, co-authored 95 publications receiving 7230 citations. Previous affiliations of Jean-Luc Redelsperger include Centre national de la recherche scientifique & National Center for Atmospheric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The Meso-NH Atmospheric Simulation Engine as mentioned in this paper is a tool for small and meso-scale atmospheric processes, which is based on the Lipps and Hemler form of the anelastic system.
Abstract: The Meso-NH Atmospheric Simulation Sys- tem is a joint eAort of the Centre National de Recher- ches Meteorologiques and Laboratoire d'Aerologie. It comprises several elements; a numerical model able to simulate the atmospheric motions, ranging from the large meso-alpha scale down to the micro-scale, with a comprehensive physical package, a flexible file manager, an ensemble of facilities to prepare initial states, either idealized or interpolated from meteorological analyses or forecasts, a flexible post-processing and graphical facility to visualize the results, and an ensemble of interactive procedures to control these functions. Some of the distinctive features of this ensemble are the following: the model is currently based on the Lipps and Hemler form of the anelastic system, but may evolve towards a more accurate form of the equations system. In the future, it will allow for simultaneous simulation of several scales of motion, by the so-called ''interactive grid-nesting technique''. It allows for the in-line com- putation and accumulation of various terms of the budget of several quantities. It allows for the transport and diAusion of passive scalars, to be coupled with a chemical module. It uses the relatively new Fortran 90 compiler. It is tailored to be easily implemented on any UNIX machine. Meso-NH is designed as a research tool for small and meso-scale atmospheric processes. It is freely accessible to the research community, and we have tried to make it as ''user-friendly'' as possible, and as general as possible, although these two goals sometimes appear contradictory. The present paper presents a general description of the adiabatic formulation and some of the basic validation simulations. A list of the currently available physical parametrizations and ini- tialization methods is also given. A more precise description of these aspects will be provided in a further paper.

893 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the turbulence scheme implemented in the Meso-NH community research model, and report on some validation studies, and compare the results of three idealized boundary-layer simulations allowing detailed comparisons with other large-eddy simulation (LES) models.
Abstract: The paper describes the turbulence scheme implemented in the Meso-NH community research model, and reports on some validation studies. Since the model is intended to perform both large-eddy and mesoscale simulations, we have developed a full three-dimensional scheme, based on the original method of Redelsperger and Sommeria. A prognostic equation for the turbulent kinetic energy is used, together with conservative variables for moist non-precipitating processes. A particularity of the scheme is the use of variable turbulent Prandtl and Schmidt numbers, consistently derived from the complete set of second-order turbulent-moment equations. The results of three idealized boundary-layer simulations allowing detailed comparisons with other large-eddy simulation (LES) models are discussed, and lead to the conclusion that the model is performing satisfactorily. The vertical flux and gradient computation can be run in isolation from the rest of the scheme, providing an efficient single-column parametrization for the mesoscale configuration of the model, if an appropriate parametrization of the eddy length-scale is used. The mixing-length specification is then the only aspect of the scheme which differs from the LES to the mesoscale configuration, and the numerical constants used for the closure terms are the same in both configurations. The scheme is run in single-column mode for the same three cases as above, and a comparison of single-column and LES results again leads to satisfactory results. It is believed that this result is original, and is due to the proper formulation of the parametrized mixing length and of the turbulent Prandtl and Schmidt numbers. In fact, a comparison of the parametrized mixing length with the length-scale of the energy-containing eddies deduced by spectral analysis of the LES shows interesting similarity.

746 citations

Journal ArticleDOI
TL;DR: The African Monsoon Multidisciplinary Analysis (AMMA) as discussed by the authors is an international project to improve our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual time scales.
Abstract: African Monsoon Multidisciplinary Analysis (AMMA) is an international project to improve our knowledge and understanding of the West African monsoon (WAM) and its variability with an emphasis on daily-to-interannual time scales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on West African nations. Recognizing the societal need to develop strategies that reduce the socioeconomic impacts of the variability of the WAM, AMMA will facilitate the multidisciplinary research required to provide improved predictions of the WAM and its impacts. This will be achieved and coordinated through the following five international working groups: i) West African monsoon and global climate, ii) water cycle, iii) surface–atmosphere feedbacks, iv) prediction of climate impacts, and v) high-impact weather prediction and predictability. AMMA promotes the international coordination of ongoing activities, basic research, and a...

644 citations

Journal ArticleDOI
TL;DR: In this paper, cloud-resolving model (CRM) simulations and parallel single-column model (SCM) tests of the sensitivity of moist atmospheric convection to mid-tropospheric humidity are presented.
Abstract: As part of the EUROCS (EUROpean Cloud Systems study) project, cloud-resolving model (CRM) simulations and parallel single-column model (SCM) tests of the sensitivity of moist atmospheric convection to midtropospheric humidity are presented. This sensitivity is broadly supported by observations and some previous model studies, but is still poorly quantified. Mixing between clouds and environment is a key mechanism, central to many of the fundamental differences between convection schemes. Here, we define an idealized quasi-steady ‘testbed’, in which the large-scale environment is assumed to adjust the local mean profiles on a timescale of one hour. We then test sensitivity to the target profiles at heights above 2 km. Two independent CRMs agree reasonably well in their response to the different background profiles and both show strong deep precipitating convection in the more moist cases, but only shallow convection in the driest case. The CRM results also appear to be numerically robust. All the SCMs, most of which are one-dimensional versions of global climate models (GCMs), show sensitivity to humidity but differ in various ways from the CRMs. Some of the SCMs are improved in the light of these comparisons, with GCM improvements documented elsewhere. © Crown copyright, 2004.

455 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of the simulation of the diurnal cycle of convective precipitation over land is addressed with the aid of cloud-resolving (CRM) and single-column (SCM) model simulations.
Abstract: In the context of the European Cloud Systems project, the problem of the simulation of the diurnal cycle of convective precipitation over land is addressed with the aid of cloud-resolving (CRM) and single-column (SCM) model simulations of an idealized midlatitude case for which observations of large-scale and surface forcing are available. The CRM results are compared to different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) convection schemes using different convective trigger procedures and convective closures. In the CRM, maximum rainfall intensity occurs at 15 h (local time). In this idealized midlatitude case, most schemes do not reproduce the afternoon precipitation peak, as (i) they cannot reproduce the gradual growth (typically over 3 hours) of the deep convective cloud layer and (ii) they produce a diurnal cycle of precipitation that is in phase with the diurnal cycle of the convective available potential energy (CAPE) and the convective inhibition (CIN), consistent with the parcel theory and CAPE closure used in the bulk mass-flux scheme. The scheme that links the triggering to the large-scale vertical velocity gets the maximum precipitation at the right time, but this may be artificial as the vertical velocity is enforced in the single-column context. The study is then extended to the global scale using ensembles of 72-hour global forecasts at resolution T511 (40 km), and long-range single 40-day forecasts at resolution T159 (125 km) with the ECMWF general-circulation model. The focus is on tropical South America and Africa where the diurnal cycle is most pronounced. The forecasts are evaluated against analyses and observed radiosonde data, as well as observed surface and satellite-derived rainfall rates. The ECMWF model version with improved convective trigger produces the smallest biases overall. It also shifts the rainfall maximum to 12 h compared to 9.5 h in the original version. In contrast to the SCM, the vertical-velocity-dependent trigger does not further improve the phase of the diurnal cycle. However, further work is necessary to match the observed 15 h precipitation peak.

265 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations

Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations

Journal ArticleDOI
TL;DR: The Coupled Ocean-Atmosphere Response Experiment (COARE) bulk algorithm was published in 1996, and it has become one of the most frequently used algorithms in the air-sea interaction community.
Abstract: In 1996, version 2.5 of the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm was published, and it has become one of the most frequently used algorithms in the air–sea interaction community. This paper describes steps taken to improve the algorithm in several ways. The number of iterations to solve for stability has been shortened from 20 to 3, and adjustments have been made to the basic profile stability functions. The scalar transfer coefficients have been redefined in terms of the mixing ratio, which is the fundamentally conserved quantity, rather than the measured water vapor mass concentration. Both the velocity and scalar roughness lengths have been changed. For the velocity roughness, the original fixed value of the Charnock parameter has been replaced by one that increases with wind speeds of between 10 and 18 m s−1. The scalar roughness length parameterization has been simplified to fit both an early set of NOAA/Environmental Technology Laboratory (ETL) experiments and...

2,097 citations