scispace - formally typeset
Search or ask a question
Author

Jean-Marc Fedeli

Bio: Jean-Marc Fedeli is an academic researcher from University of Grenoble. The author has contributed to research in topics: Silicon photonics & Photonics. The author has an hindex of 36, co-authored 211 publications receiving 6066 citations. Previous affiliations of Jean-Marc Fedeli include Centre national de la recherche scientifique & Alternatives.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths.
Abstract: Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.

939 citations

Journal ArticleDOI
TL;DR: A compact pin Ge photodetector is integrated in submicron SOI rib waveguide using butt coupling configuration which is sufficient to totally absorb light at the wavelength of 1.55 microm.
Abstract: A compact pin Ge photodetector is integrated in submicron SOI rib waveguide. The detector length is reduced down to 15 μm using butt coupling configuration which is sufficient to totally absorb light at the wavelength of 1.55 μm. A -3 dB bandwidth of 42 GHz has been measured at a 4V reverse bias with a responsivity as high as 1 A/W at the wavelength of 1.55 μm and a low dark current density of 60 mA/cm2. At a wavelength of 1.52 μm, a responsivity of 1 A/W is obtained under -0.5 V bias. The process is fully compatible with CMOS technology.

440 citations

Journal ArticleDOI
TL;DR: A very high optical bandwidth, estimated up to 120GHz, was evidenced in 10 µm long Ge photodetectors selectively grown at the end of silicon waveguides using three kinds of experimental set-ups.
Abstract: We report on lateral pin germanium photodetectors selectively grown at the end of silicon waveguides. A very high optical bandwidth, estimated up to 120GHz, was evidenced in 10 µm long Ge photodetectors using three kinds of experimental set-ups. In addition, a responsivity of 0.8 A/W at 1550 nm was measured. An open eye diagrams at 40Gb/s were demonstrated under zero-bias at a wavelength of 1.55 µm.

417 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated silicon-organic hybrid (SOH) modulator with a 3dB bandwidth at an operating frequency beyond 100 GHz was presented, which is the first silicon-based modulator capable of modulating light at frequencies of up to 100 GHz.
Abstract: Electro-optic modulation at frequencies of 100 GHz and beyond is important for photonic-electronic signal processing at the highest speeds. To date, however, only a small number of devices exist that can operate up to this frequency. In this study, we demonstrate that this frequency range can be addressed by nanophotonic, silicon-based modulators. We exploit the ultrafast Pockels effect by using the silicon–organic hybrid (SOH) platform, which combines highly nonlinear organic molecules with silicon waveguides. Until now, the bandwidth of these devices was limited by the losses of the radiofrequency (RF) signal and the RC (resistor-capacitor) time constant of the silicon structure. The RF losses are overcome by using a device as short as 500 µm, and the RC time constant is decreased by using a highly conductive electron accumulation layer and an improved gate insulator. Using this method, we demonstrate for the first time an integrated silicon modulator with a 3dB bandwidth at an operating frequency beyond 100 GHz. Our results clearly indicate that the RC time constant is not a fundamental speed limitation of SOH devices at these frequencies. Our device has a voltage–length product of only VπL=11 V mm, which compares favorably with the best silicon-photonic modulators available today. Using cladding materials with stronger nonlinearities, the voltage–length product is expected to improve by more than an order of magnitude. Researchers have developed an integrated silicon–organic device capable of modulating light at frequencies of up to 100 GHz. The ultrafast modulator, fabricated by Luca Alloatti and co-workers, relies on the electro-optic Pockels effect that occurs in a polymer cladding covering a silicon slot waveguide. Application of an electric field to the polymer causes its refractive index to change, which in turn modifies the phase of light passing through it. The 500-µm-long device has a half-wave voltage of 22 V, meaning that this voltage is required in order to achieve a π phase shift for the output light. However, the researchers are confident that using a cladding material with a stronger nonlinearity could improve this figure of merit by a factor of ten.

283 citations

Journal ArticleDOI
TL;DR: The switching device comprises a compact ring resonator formed by horizontal silicon slot waveguides filled with highly nonlinear silicon nanocrystals in silica that performs about 1 order of magnitude faster than previous approaches on silicon.
Abstract: We demonstrate experimentally all-optical switching on a silicon chip at telecom wavelengths. The switching device comprises a compact ring resonator formed by horizontal silicon slot waveguides filled with highly nonlinear silicon nanocrystals in silica. When pumping at power levels about 100 mW using 10 ps pulses, more than 50% modulation depth is observed at the switch output. The switch performs about 1 order of magnitude faster than previous approaches on silicon and is fully fabricated using complementary metal oxide semiconductor technologies.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations

Journal ArticleDOI
01 Jul 2017
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.

1,955 citations

Journal ArticleDOI
24 Sep 2018-Nature
TL;DR: Monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels are demonstrated.
Abstract: Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation. Chip-scale lithium niobate electro-optic modulators that rapidly convert electrical to optical signals and use CMOS-compatible voltages could prove useful in optical communication networks, microwave photonic systems and photonic computation.

1,358 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Geon-On-Si avalanche photodets.
Abstract: The past decade has seen rapid progress in research into high-performance Ge-on-Si photodetectors. Owing to their excellent optoelectronic properties, which include high responsivity from visible to near-infrared wavelengths, high bandwidths and compatibility with silicon complementary metal–oxide–semiconductor circuits, these devices can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and infrared imaging at low cost and low power consumption. This Review summarizes the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors. Owing to their excellent optoelectronic properties, Ge-on-Si photodetector can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and low-cost infrared imaging at low power consumption. This Review covers the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors.

1,259 citations