scispace - formally typeset
Search or ask a question
Author

Jean Marchand

Bio: Jean Marchand is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Cannabinoid receptor type 2 & Cannabinoid receptor. The author has an hindex of 8, co-authored 9 publications receiving 2581 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.
Abstract: Two proteins with seven transmembrane-spanning domains typical of guanosine-nucleotide-binding-protein-coupled receptors have been identified as cannabinoid receptors; the central cannabinoid receptor, CB1, and the peripheral cannabinoid receptor, CB2, initially described in rat brain and spleen, respectively. Here, we report the distribution patterns for both CB1 and CB2 transcripts in human immune cells and in several human tissues, as analysed using a highly sensitive and quantitative PCR-based method. CB1 was mainly expressed in the central nervous system and, to a lower extent, in several peripheral tissues such as adrenal gland, heart, lung, prostate, uterus, ovary, testis, bone marrow, thymus and tonsils. In contrast, the CB2 gene, which is not expressed in the brain, was particularly abundant in immune tissues, with an expression level 10-100-fold higher than that of CB1. Although CB2 mRNA was also detected in some other peripheral tissues, its level remained very low. In spleen and tonsils, the CB2 mRNA content was equivalent to that of CB1 mRNA in the central nervous system. Among the main human blood cell subpopulations, the distribution pattern of the CB2 mRNA displayed important variations. The rank order of CB2 mRNA levels in these cells was B-cells > natural killer cells >> monocytes > polymorphonuclear neutrophil cells > T8 cells > T4 cells. The same rank order was also established in human cell lines belonging to the myeloid, monocytic and lymphoid lineages. The prevailing expression of the CB2 gene in immune tissues was confirmed by Northern-blot analysis. In addition, the expression of the CB2 protein was demonstrated by an immunohistological analysis performed on tonsil sections using specific anti-(human CB2) IgG; this experiment showed that CB2 expression was restricted to B-lymphocyte-enriched areas of the mantle of secondary lymphoid follicles. These results suggest that (a) CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and (b) cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.

1,646 citations

Journal ArticleDOI
TL;DR: Findings provide evidence for a functional role of the CB2 receptor in gene induction mediated by the MAP kinase network in time- and dose-dependent manners.
Abstract: Cannabinoids, known for their psychoactive effects, also possess immunomodulatory properties. The recent isolation and cloning of the G-protein-coupled peripheral cannabinoid receptor (CB2), mainly expressed in immune tissues, have provided molecular tools to determine how cannabinoid compounds may mediate immunomodulation. We here investigated the CB2 signaling properties using stably transfected Chinese hamster ovary cells expressing human CB2. First, we showed that stimulation by a cannabinoid agonist activated mitogen-activated protein (MAP) kinase in time- and dose-dependent manners. The rank order of potency for MAP kinase activation of cannabinoid agonists correlated well with their binding capacities. Second, we demonstrated that, following MAP kinase activation, cannabinoids induced the expression of the growth-related gene Krox-24, also known as NGFI-A, zif/268, and egr-1. Pertussis toxin completely prevented both MAP kinase activation and Krox-24 induction, even more these responses appeared to be dependent of specific proteine kinase C isoforms and independent of inhibition of adenylyl cyclase. A similar coupling of CB2 to a mitogenic pathway and to the regulation of Krox-24 expression was also observed in human promyelocytic cells HL60. Taken together, these findings provide evidence for a functional role of the CB2 receptor in gene induction mediated by the MAP kinase network.

291 citations

Journal ArticleDOI
TL;DR: Analysis of the effects of anandamide on peroxisome proliferator-activated receptor gamma (PPARgamma) activity and competition binding experiments indicate that an andamide binds PPARgamMA and induces cellular PPARGamma signaling.

289 citations

Journal ArticleDOI
15 Nov 1998-Blood
TL;DR: Theexpression of CB2 receptors in leukocytes using anti-CB2 receptor immunopurified polyclonal antibodies and the effect of the cannabinoid agonist CP55,940 on the CD40-mediated proliferation of both virgin and GC B-cell subsets strongly support an involvement ofCB2 receptors during B- cell differentiation.

174 citations

Journal ArticleDOI
TL;DR: This study examined the effect of cannabinoid ligands on human tonsillar B‐cells activated either through cross‐linking of surface immunoglobulins or ligation of the CD40 antigen to assume that the growth enhancing activity observed on B‐ cells at very low concentrations of cannabinoids could be mediated through the CB2 receptor.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Abstract: Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.

2,619 citations

Journal ArticleDOI
TL;DR: The synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation, and the fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release.
Abstract: Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.

1,511 citations

Journal ArticleDOI
14 Oct 2005-Science
TL;DR: These functional CB2 receptors in the brainstem were activated by a CB2 receptor agonist, 2-arachidonoylglycerol, and by elevated endogenous levels of endocannabinoids, which also act at CB1 receptors.
Abstract: The presence and function of CB2 receptors in central nervous system (CNS) neurons are controversial. We report the expression of CB2 receptor messenger RNA and protein localization on brainstem neurons. These functional CB2 receptors in the brainstem were activated by a CB2 receptor agonist, 2-arachidonoylglycerol, and by elevated endogenous levels of endocannabinoids, which also act at CB1 receptors. CB2 receptors represent an alternative site of action of endocannabinoids that opens the possibility of nonpsychotropic therapeutic interventions using enhanced endocannabinoid levels in localized brain areas.

1,466 citations

Journal ArticleDOI
TL;DR: This review focuses on the classification, binding properties, effector systems and distribution of cannabinoid receptors, and describes the various cannabinoid receptor agonists and antagonists now available and considers the main in vivo and in vitro bioassay methods that are generally used.

1,456 citations

Journal ArticleDOI
TL;DR: This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non- CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors.
Abstract: There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.

1,439 citations